Architecting space communication networks

Thesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2014.

Bibliographic Details
Main Author: Sanchez Net, Marc
Other Authors: Edward F. Crawley.
Format: Thesis
Language:eng
Published: Massachusetts Institute of Technology 2014
Subjects:
Online Access:http://hdl.handle.net/1721.1/90792
_version_ 1811074729247768576
author Sanchez Net, Marc
author2 Edward F. Crawley.
author_facet Edward F. Crawley.
Sanchez Net, Marc
author_sort Sanchez Net, Marc
collection MIT
description Thesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2014.
first_indexed 2024-09-23T09:54:26Z
format Thesis
id mit-1721.1/90792
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T09:54:26Z
publishDate 2014
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/907922019-04-11T09:20:22Z Architecting space communication networks Architecting near-earth space communication networks Sanchez Net, Marc Edward F. Crawley. Massachusetts Institute of Technology. Department of Aeronautics and Astronautics. Massachusetts Institute of Technology. Department of Aeronautics and Astronautics. Aeronautics and Astronautics. Thesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2014. Cataloged from PDF version of thesis. Includes bibliographical references (pages 119-122). Reliable communication and navigation services are critical to robotic and human space missions. NASA currently provides them through three independent and uncoordinated network that consist of both Earth-based and space-based assets, all managed under the Space Navigation and Communication Program. Nevertheless, the ever increasing mission requirements and funding limitations motivates the need of revising the current network architectures in order to identify areas of potential performance and cost efficiency improvements. The main objective of this thesis is to present a tool that helps decision-makers during the process of architecting a space communication network by (1) systematically enumerating and exploring the space of alternative network architectures, (2) identifying those with better performance and lower cost, and (3) providing traceability between the outputs of the tool and the architecting decisions. The tool is tailored to the high level design of near Earth space communication networks that support robotic and human activities in the Earth vicinity through a set of relay communication satellites and their supporting ground stations. The decisions available to the network architect (both technical and contractual) are presented and along with their couplings. The tool is validated by comparing it to NASA's Space Network. The current operations of the system are analyzed and used as the baseline case for the validation process. Results demonstrate that the both performance model and spacecraft design algorithm are accurate to less than 10%, while the cost module produces estimates with a 15% error. Finally, the utility of the tool is demonstrated through three case studies on the evolution of the Space Network. In particular, the impact of new radio-frequency and optical technology to increase the system capacity is analyzed based on the predicted demand for the 2020-2030 decade. Similarly, the savings of flying relay transponders in commercial satellites as hosted payloads are quantified and benchmarked with respect to NASA's current approach of procuring and operating the entire network. Lastly, the tool is used to compare the current Space Network bent-pipe architecture with a constellation of satellites that takes advantage of inter-satellite links to provide full coverage of low Earth orbits with only one ground station. by Marc Sanchez Net. S.M. 2014-10-08T15:29:27Z 2014-10-08T15:29:27Z 2014 2014 Thesis http://hdl.handle.net/1721.1/90792 891575116 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 122 pages application/pdf Massachusetts Institute of Technology
spellingShingle Aeronautics and Astronautics.
Sanchez Net, Marc
Architecting space communication networks
title Architecting space communication networks
title_full Architecting space communication networks
title_fullStr Architecting space communication networks
title_full_unstemmed Architecting space communication networks
title_short Architecting space communication networks
title_sort architecting space communication networks
topic Aeronautics and Astronautics.
url http://hdl.handle.net/1721.1/90792
work_keys_str_mv AT sancheznetmarc architectingspacecommunicationnetworks
AT sancheznetmarc architectingnearearthspacecommunicationnetworks