Control design along trajectories with sums of squares programming
Motivated by the need for formal guarantees on the stability and safety of controllers for challenging robot control tasks, we present a control design procedure that explicitly seeks to maximize the size of an invariant “funnel” that leads to a predefined goal set. Our certificates of invariance ar...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Institute of Electrical and Electronics Engineers (IEEE)
2014
|
Online Access: | http://hdl.handle.net/1721.1/90910 https://orcid.org/0000-0002-9383-6071 https://orcid.org/0000-0002-8712-7092 |
Summary: | Motivated by the need for formal guarantees on the stability and safety of controllers for challenging robot control tasks, we present a control design procedure that explicitly seeks to maximize the size of an invariant “funnel” that leads to a predefined goal set. Our certificates of invariance are given in terms of sums of squares proofs of a set of appropriately defined Lyapunov inequalities. These certificates, together with our proposed polynomial controllers, can be efficiently obtained via semidefinite optimization. Our approach can handle time-varying dynamics resulting from tracking a given trajectory, input saturations (e.g. torque limits), and can be extended to deal with uncertainty in the dynamics and state. The resulting controllers can be used by space-filling feedback motion planning algorithms to fill up the space with significantly fewer trajectories. We demonstrate our approach on a severely torque limited underactuated double pendulum (Acrobot) and provide extensive simulation and hardware validation. |
---|