A numerical algebraic geometry approach to regional stability analysis of polynomial systems

We explore region of attraction (ROA) estimation for polynomial systems via the numerical solution of polynomial equations. Computing an optimal, stable sub-level set of a Lyapunov function is first posed as a polynomial optimization problem. Solutions to this optimization problem are found by solvi...

Mô tả đầy đủ

Chi tiết về thư mục
Những tác giả chính: Wampler, Charles, Permenter, Frank Noble, Tedrake, Russell Louis
Tác giả khác: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Định dạng: Bài viết
Ngôn ngữ:en_US
Được phát hành: Institute of Electrical and Electronics Engineers (IEEE) 2014
Truy cập trực tuyến:http://hdl.handle.net/1721.1/90911
https://orcid.org/0000-0002-8935-7449
https://orcid.org/0000-0002-8712-7092
Miêu tả
Tóm tắt:We explore region of attraction (ROA) estimation for polynomial systems via the numerical solution of polynomial equations. Computing an optimal, stable sub-level set of a Lyapunov function is first posed as a polynomial optimization problem. Solutions to this optimization problem are found by solving a polynomial system of equations using techniques from numerical algebraic geometry. This system describes KKT points and singular points not satisfying a regularity condition. Though this system has exponentially many solutions, the proposed method trivially parallelizes and is practical for problems of moderate dimension and degree. In suitably generic settings, the method can solve the underlying optimization problem to arbitrary precision, which could make it a useful tool for studying popular semidefinite programming based relaxations used in ROA analysis.