Linear information coupling problems

Many network information theory problems face the similar difficulty of single letterization. We argue that this is due to the lack of a geometric structure on the space of probability distribution. In this paper, we develop such a structure by assuming that the distributions of interest are close t...

Full description

Bibliographic Details
Main Authors: Huang, Shao-Lun, Zheng, Lizhong
Other Authors: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Format: Article
Language:en_US
Published: Institute of Electrical and Electronics Engineers (IEEE) 2014
Online Access:http://hdl.handle.net/1721.1/91014
https://orcid.org/0000-0002-6108-0222
Description
Summary:Many network information theory problems face the similar difficulty of single letterization. We argue that this is due to the lack of a geometric structure on the space of probability distribution. In this paper, we develop such a structure by assuming that the distributions of interest are close to each other. Under this assumption, the K-L divergence is reduced to the squared Euclidean metric in an Euclidean space. Moreover, we construct the notion of coordinate and inner product, which will facilitate solving communication problems. We will also present the application of this approach to the point-to-point channel and the general broadcast channel, which demonstrates how our technique simplifies information theory problems.