Sampling from Gaussian graphical models using subgraph perturbations

The problem of efficiently drawing samples from a Gaussian graphical model or Gaussian Markov random field is studied. We introduce the subgraph perturbation sampling algorithm, which makes use of any pre-existing tractable inference algorithm for a subgraph by perturbing this algorithm so as to yie...

Full description

Bibliographic Details
Main Authors: Liu, Ying, Kosut, Oliver, Willsky, Alan S.
Other Authors: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Format: Article
Language:en_US
Published: Institute of Electrical and Electronics Engineers (IEEE) 2014
Online Access:http://hdl.handle.net/1721.1/91051
https://orcid.org/0000-0003-0149-5888
Description
Summary:The problem of efficiently drawing samples from a Gaussian graphical model or Gaussian Markov random field is studied. We introduce the subgraph perturbation sampling algorithm, which makes use of any pre-existing tractable inference algorithm for a subgraph by perturbing this algorithm so as to yield asymptotically exact samples for the intended distribution. The subgraph can have any structure for which efficient inference algorithms exist: for example, tree-structured, low tree-width, or having a small feedback vertex set. The experimental results demonstrate that this subgraph perturbation algorithm efficiently yields accurate samples for many graph topologies.