Modelling human embryoid body cell adhesion to a combinatorial library of polymer surfaces

Designing materials to control biology is an intense focus of biomaterials and regenerative medicine research. Discovering and designing materials with appropriate biological compatibility or active control of cells and tissues is being increasingly undertaken using high throughput synthesis and ass...

Full description

Bibliographic Details
Main Authors: Epa, V. Chandana, Yang, Jing, Mei, Ying, Hook, Andrew L., Davies, Martyn C., Alexander, Morgan R., Winkler, David A., Anderson, Daniel Griffith, Langer, Robert S
Other Authors: Harvard University--MIT Division of Health Sciences and Technology
Format: Article
Language:en_US
Published: Royal Society of Chemistry 2014
Online Access:http://hdl.handle.net/1721.1/91142
https://orcid.org/0000-0001-5629-4798
https://orcid.org/0000-0003-4255-0492
_version_ 1811093079595155456
author Epa, V. Chandana
Yang, Jing
Mei, Ying
Hook, Andrew L.
Davies, Martyn C.
Alexander, Morgan R.
Winkler, David A.
Anderson, Daniel Griffith
Langer, Robert S
author2 Harvard University--MIT Division of Health Sciences and Technology
author_facet Harvard University--MIT Division of Health Sciences and Technology
Epa, V. Chandana
Yang, Jing
Mei, Ying
Hook, Andrew L.
Davies, Martyn C.
Alexander, Morgan R.
Winkler, David A.
Anderson, Daniel Griffith
Langer, Robert S
author_sort Epa, V. Chandana
collection MIT
description Designing materials to control biology is an intense focus of biomaterials and regenerative medicine research. Discovering and designing materials with appropriate biological compatibility or active control of cells and tissues is being increasingly undertaken using high throughput synthesis and assessment methods. We report a relatively simple but powerful machine-learning method of generating models that link microscopic or molecular properties of polymers or other materials to their biological effects. We illustrate the potential of these methods by developing the first robust, predictive, quantitative, and purely computational models of adhesion of human embryonic stem cell embryoid bodies (hEB) to the surfaces of a 496-member polymer micro array library.
first_indexed 2024-09-23T15:39:22Z
format Article
id mit-1721.1/91142
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T15:39:22Z
publishDate 2014
publisher Royal Society of Chemistry
record_format dspace
spelling mit-1721.1/911422022-10-02T03:09:17Z Modelling human embryoid body cell adhesion to a combinatorial library of polymer surfaces Epa, V. Chandana Yang, Jing Mei, Ying Hook, Andrew L. Davies, Martyn C. Alexander, Morgan R. Winkler, David A. Anderson, Daniel Griffith Langer, Robert S Harvard University--MIT Division of Health Sciences and Technology Massachusetts Institute of Technology. Department of Chemical Engineering Koch Institute for Integrative Cancer Research at MIT Mei, Ying Langer, Robert Anderson, Daniel Griffith Designing materials to control biology is an intense focus of biomaterials and regenerative medicine research. Discovering and designing materials with appropriate biological compatibility or active control of cells and tissues is being increasingly undertaken using high throughput synthesis and assessment methods. We report a relatively simple but powerful machine-learning method of generating models that link microscopic or molecular properties of polymers or other materials to their biological effects. We illustrate the potential of these methods by developing the first robust, predictive, quantitative, and purely computational models of adhesion of human embryonic stem cell embryoid bodies (hEB) to the surfaces of a 496-member polymer micro array library. 2014-10-21T19:29:00Z 2014-10-21T19:29:00Z 2012-08 2012-07 Article http://purl.org/eprint/type/JournalArticle 0959-9428 1364-5501 http://hdl.handle.net/1721.1/91142 Epa, V. Chandana, Jing Yang, Ying Mei, Andrew L. Hook, Robert Langer, Daniel G. Anderson, Martyn C. Davies, Morgan R. Alexander, and David A. Winkler. “Modelling Human Embryoid Body Cell Adhesion to a Combinatorial Library of Polymer Surfaces.” J. Mater. Chem. 22, no. 39 (2012): 20902. https://orcid.org/0000-0001-5629-4798 https://orcid.org/0000-0003-4255-0492 en_US http://dx.doi.org/10.1039/c2jm34782b Journal of Materials Chemistry Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf Royal Society of Chemistry PMC
spellingShingle Epa, V. Chandana
Yang, Jing
Mei, Ying
Hook, Andrew L.
Davies, Martyn C.
Alexander, Morgan R.
Winkler, David A.
Anderson, Daniel Griffith
Langer, Robert S
Modelling human embryoid body cell adhesion to a combinatorial library of polymer surfaces
title Modelling human embryoid body cell adhesion to a combinatorial library of polymer surfaces
title_full Modelling human embryoid body cell adhesion to a combinatorial library of polymer surfaces
title_fullStr Modelling human embryoid body cell adhesion to a combinatorial library of polymer surfaces
title_full_unstemmed Modelling human embryoid body cell adhesion to a combinatorial library of polymer surfaces
title_short Modelling human embryoid body cell adhesion to a combinatorial library of polymer surfaces
title_sort modelling human embryoid body cell adhesion to a combinatorial library of polymer surfaces
url http://hdl.handle.net/1721.1/91142
https://orcid.org/0000-0001-5629-4798
https://orcid.org/0000-0003-4255-0492
work_keys_str_mv AT epavchandana modellinghumanembryoidbodycelladhesiontoacombinatoriallibraryofpolymersurfaces
AT yangjing modellinghumanembryoidbodycelladhesiontoacombinatoriallibraryofpolymersurfaces
AT meiying modellinghumanembryoidbodycelladhesiontoacombinatoriallibraryofpolymersurfaces
AT hookandrewl modellinghumanembryoidbodycelladhesiontoacombinatoriallibraryofpolymersurfaces
AT daviesmartync modellinghumanembryoidbodycelladhesiontoacombinatoriallibraryofpolymersurfaces
AT alexandermorganr modellinghumanembryoidbodycelladhesiontoacombinatoriallibraryofpolymersurfaces
AT winklerdavida modellinghumanembryoidbodycelladhesiontoacombinatoriallibraryofpolymersurfaces
AT andersondanielgriffith modellinghumanembryoidbodycelladhesiontoacombinatoriallibraryofpolymersurfaces
AT langerroberts modellinghumanembryoidbodycelladhesiontoacombinatoriallibraryofpolymersurfaces