Is DNA a Good Model Polymer?

The details surrounding the crossover from wormlike-specific to universal polymeric behavior has been the subject of debate and confusion even for the simple case of a dilute, unconfined wormlike chain. We have directly computed the polymer size, form factor, free energy, and Kirkwood diffusivity fo...

Full description

Bibliographic Details
Main Authors: Tree, Douglas R., Muralidhar, Abhiram, Doyle, Patrick S., Dorfman, Kevin D.
Other Authors: Massachusetts Institute of Technology. Department of Chemical Engineering
Format: Article
Language:en_US
Published: American Chemical Society (ACS) 2014
Online Access:http://hdl.handle.net/1721.1/91257
Description
Summary:The details surrounding the crossover from wormlike-specific to universal polymeric behavior has been the subject of debate and confusion even for the simple case of a dilute, unconfined wormlike chain. We have directly computed the polymer size, form factor, free energy, and Kirkwood diffusivity for unconfined wormlike chains as a function of molecular weight, focusing on persistence lengths and effective widths that represent single-stranded and double-stranded DNA in a high ionic strength buffer. To do so, we use a chain-growth Monte Carlo algorithm, the pruned-enriched Rosenbluth method (PERM), which allows us to estimate equilibrium and near-equilibrium dynamic properties of wormlike chains over an extremely large range of contour lengths. From our calculations, we find that very large DNA chains (≈1 000 000, base pairs depending on the choice of size metric) are required to reach flexible, swollen nondraining coils. Furthermore, our results indicate that the commonly used model polymer λ-DNA (48 500, base pairs) does not exhibit “ideal” scaling but exists in the middle of the transition to long-chain behavior. We subsequently conclude that typical DNA used in experiments are too short to serve as an accurate model of long-chain, universal polymer behavior.