Kinetically Controlled Nanostructure Formation in Self-Assembled Globular Protein–Polymer Diblock Copolymers

Aqueous processing of globular protein–polymer diblock copolymers into solid-state materials and subsequent solvent annealing enables kinetic and thermodynamic control of nanostructure formation to produce block copolymer morphologies that maintain a high degree of protein fold and function. When mo...

Full description

Bibliographic Details
Main Authors: Thomas, Carla S., Xu, Liza, Olsen, Bradley D.
Other Authors: Massachusetts Institute of Technology. Department of Chemical Engineering
Format: Article
Language:en_US
Published: American Chemical Society (ACS) 2014
Online Access:http://hdl.handle.net/1721.1/91485
https://orcid.org/0000-0002-7272-7140
_version_ 1811081138757697536
author Thomas, Carla S.
Xu, Liza
Olsen, Bradley D.
author2 Massachusetts Institute of Technology. Department of Chemical Engineering
author_facet Massachusetts Institute of Technology. Department of Chemical Engineering
Thomas, Carla S.
Xu, Liza
Olsen, Bradley D.
author_sort Thomas, Carla S.
collection MIT
description Aqueous processing of globular protein–polymer diblock copolymers into solid-state materials and subsequent solvent annealing enables kinetic and thermodynamic control of nanostructure formation to produce block copolymer morphologies that maintain a high degree of protein fold and function. When model diblock copolymers composed of mCherry-b-poly(N-isopropylacrylamide) are used, orthogonal control over solubility of the protein block through changes in pH and the polymer block through changes in temperature is demonstrated during casting and solvent annealing. Hexagonal cylinders, perforated lamellae, lamellae, or hexagonal and disordered micellar phases are observed, depending on the coil fraction of the block copolymer and the kinetic pathway used for self-assembly. Good solvents for the polymer block produce ordered structures reminiscent of coil–coil diblock copolymers, while an unfavorable solvent results in kinetically trapped micellar structures. Decreasing solvent quality for the protein improves long-range ordering, suggesting that the strength of protein interactions influences nanostructure formation. Subsequent solvent annealing results in evolution of the nanostructures, with the best ordering and the highest protein function observed when annealing in a good solvent for both blocks. While protein secondary structure was found to be almost entirely preserved for all processing pathways, UV–vis spectroscopy of solid-state films indicates that using a good solvent for the protein block enables up to 70% of the protein to be retained in its functional form.
first_indexed 2024-09-23T11:42:06Z
format Article
id mit-1721.1/91485
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T11:42:06Z
publishDate 2014
publisher American Chemical Society (ACS)
record_format dspace
spelling mit-1721.1/914852022-09-27T21:17:59Z Kinetically Controlled Nanostructure Formation in Self-Assembled Globular Protein–Polymer Diblock Copolymers Thomas, Carla S. Xu, Liza Olsen, Bradley D. Massachusetts Institute of Technology. Department of Chemical Engineering Thomas, Carla S. Xu, Liza Olsen, Bradley D. Aqueous processing of globular protein–polymer diblock copolymers into solid-state materials and subsequent solvent annealing enables kinetic and thermodynamic control of nanostructure formation to produce block copolymer morphologies that maintain a high degree of protein fold and function. When model diblock copolymers composed of mCherry-b-poly(N-isopropylacrylamide) are used, orthogonal control over solubility of the protein block through changes in pH and the polymer block through changes in temperature is demonstrated during casting and solvent annealing. Hexagonal cylinders, perforated lamellae, lamellae, or hexagonal and disordered micellar phases are observed, depending on the coil fraction of the block copolymer and the kinetic pathway used for self-assembly. Good solvents for the polymer block produce ordered structures reminiscent of coil–coil diblock copolymers, while an unfavorable solvent results in kinetically trapped micellar structures. Decreasing solvent quality for the protein improves long-range ordering, suggesting that the strength of protein interactions influences nanostructure formation. Subsequent solvent annealing results in evolution of the nanostructures, with the best ordering and the highest protein function observed when annealing in a good solvent for both blocks. While protein secondary structure was found to be almost entirely preserved for all processing pathways, UV–vis spectroscopy of solid-state films indicates that using a good solvent for the protein block enables up to 70% of the protein to be retained in its functional form. United States. Dept. of Energy. Office of Basic Energy Sciences (Award DE-SC0007106) 2014-11-07T13:38:31Z 2014-11-07T13:38:31Z 2012-08 2012-07 Article http://purl.org/eprint/type/JournalArticle 1525-7797 1526-4602 http://hdl.handle.net/1721.1/91485 Thomas, Carla S., Liza Xu, and Bradley D. Olsen. “Kinetically Controlled Nanostructure Formation in Self-Assembled Globular Protein–Polymer Diblock Copolymers.” Biomacromolecules 13, no. 9 (September 10, 2012): 2781–2792. https://orcid.org/0000-0002-7272-7140 en_US http://dx.doi.org/10.1021/bm300763x Biomacromolecules Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. application/pdf American Chemical Society (ACS) PMC
spellingShingle Thomas, Carla S.
Xu, Liza
Olsen, Bradley D.
Kinetically Controlled Nanostructure Formation in Self-Assembled Globular Protein–Polymer Diblock Copolymers
title Kinetically Controlled Nanostructure Formation in Self-Assembled Globular Protein–Polymer Diblock Copolymers
title_full Kinetically Controlled Nanostructure Formation in Self-Assembled Globular Protein–Polymer Diblock Copolymers
title_fullStr Kinetically Controlled Nanostructure Formation in Self-Assembled Globular Protein–Polymer Diblock Copolymers
title_full_unstemmed Kinetically Controlled Nanostructure Formation in Self-Assembled Globular Protein–Polymer Diblock Copolymers
title_short Kinetically Controlled Nanostructure Formation in Self-Assembled Globular Protein–Polymer Diblock Copolymers
title_sort kinetically controlled nanostructure formation in self assembled globular protein polymer diblock copolymers
url http://hdl.handle.net/1721.1/91485
https://orcid.org/0000-0002-7272-7140
work_keys_str_mv AT thomascarlas kineticallycontrollednanostructureformationinselfassembledglobularproteinpolymerdiblockcopolymers
AT xuliza kineticallycontrollednanostructureformationinselfassembledglobularproteinpolymerdiblockcopolymers
AT olsenbradleyd kineticallycontrollednanostructureformationinselfassembledglobularproteinpolymerdiblockcopolymers