Adjuvant-carrying synthetic vaccine particles augment the immune response to encapsulated antigen and exhibit strong local immune activation without inducing systemic cytokine release
Augmentation of immunogenicity can be achieved by particulate delivery of an antigen and by its co-administration with an adjuvant. However, many adjuvants initiate strong systemic inflammatory reactions in vivo, leading to potential adverse events and safety concerns. We have developed a synthetic...
Main Authors: | , , , , , , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Elsevier
2014
|
Online Access: | http://hdl.handle.net/1721.1/91494 https://orcid.org/0000-0003-4255-0492 |
_version_ | 1826209363041189888 |
---|---|
author | Ilyinskii, Petr O. Roy, Christopher J. O'Neil, Conlin P. Browning, Erica A. Pittet, Lynnelle A. Altreuter, David H. Alexis, Frank Tonti, Elena Shi, Jinjun Basto, Pamela Antonia Iannacone, Matteo Radovic-Moreno, Aleksandar F. Farokhzad, Omid C. von Andrian, Ulrich H. Johnston, Lloyd P. M. Kishimoto, Takashi Kei Langer, Robert |
author2 | Harvard University--MIT Division of Health Sciences and Technology |
author_facet | Harvard University--MIT Division of Health Sciences and Technology Ilyinskii, Petr O. Roy, Christopher J. O'Neil, Conlin P. Browning, Erica A. Pittet, Lynnelle A. Altreuter, David H. Alexis, Frank Tonti, Elena Shi, Jinjun Basto, Pamela Antonia Iannacone, Matteo Radovic-Moreno, Aleksandar F. Farokhzad, Omid C. von Andrian, Ulrich H. Johnston, Lloyd P. M. Kishimoto, Takashi Kei Langer, Robert |
author_sort | Ilyinskii, Petr O. |
collection | MIT |
description | Augmentation of immunogenicity can be achieved by particulate delivery of an antigen and by its co-administration with an adjuvant. However, many adjuvants initiate strong systemic inflammatory reactions in vivo, leading to potential adverse events and safety concerns. We have developed a synthetic vaccine particle (SVP) technology that enables co-encapsulation of antigen with potent adjuvants. We demonstrate that co-delivery of an antigen with a TLR7/8 or TLR9 agonist in synthetic polymer nanoparticles results in a strong augmentation of humoral and cellular immune responses with minimal systemic production of inflammatory cytokines. In contrast, antigen encapsulated into nanoparticles and admixed with free TLR7/8 agonist leads to lower immunogenicity and rapid induction of high levels of inflammatory cytokines in the serum (e.g., TNF-a and IL-6 levels are 50- to 200-fold higher upon injection of free resiquimod (R848) than of nanoparticle-encapsulated R848). Conversely, local immune stimulation as evidenced by cellular infiltration of draining lymph nodes and by intranodal cytokine production was more pronounced and persisted longer when SVP-encapsulated TLR agonists were used. The strong local immune activation achieved using a modular self-assembling nanoparticle platform markedly enhanced immunogenicity and was equally effective whether antigen and adjuvant were co-encapsulated in a single nanoparticle formulation or co-delivered in two separate nanoparticles. Moreover, particle encapsulation enabled the utilization of CpG oligonucleotides with the natural phosphodiester backbone, which are otherwise rapidly hydrolyzed by nucleases in vivo. The use of SVP may enable clinical use of potent TLR agonists as vaccine adjuvants for indications where cellular immunity or robust humoral responses are required. |
first_indexed | 2024-09-23T14:21:20Z |
format | Article |
id | mit-1721.1/91494 |
institution | Massachusetts Institute of Technology |
language | en_US |
last_indexed | 2024-09-23T14:21:20Z |
publishDate | 2014 |
publisher | Elsevier |
record_format | dspace |
spelling | mit-1721.1/914942022-10-01T20:48:27Z Adjuvant-carrying synthetic vaccine particles augment the immune response to encapsulated antigen and exhibit strong local immune activation without inducing systemic cytokine release Ilyinskii, Petr O. Roy, Christopher J. O'Neil, Conlin P. Browning, Erica A. Pittet, Lynnelle A. Altreuter, David H. Alexis, Frank Tonti, Elena Shi, Jinjun Basto, Pamela Antonia Iannacone, Matteo Radovic-Moreno, Aleksandar F. Farokhzad, Omid C. von Andrian, Ulrich H. Johnston, Lloyd P. M. Kishimoto, Takashi Kei Langer, Robert Harvard University--MIT Division of Health Sciences and Technology Koch Institute for Integrative Cancer Research at MIT Basto, Pamela Antonia Radovic-Moreno, Aleksandar F. Langer, Robert Augmentation of immunogenicity can be achieved by particulate delivery of an antigen and by its co-administration with an adjuvant. However, many adjuvants initiate strong systemic inflammatory reactions in vivo, leading to potential adverse events and safety concerns. We have developed a synthetic vaccine particle (SVP) technology that enables co-encapsulation of antigen with potent adjuvants. We demonstrate that co-delivery of an antigen with a TLR7/8 or TLR9 agonist in synthetic polymer nanoparticles results in a strong augmentation of humoral and cellular immune responses with minimal systemic production of inflammatory cytokines. In contrast, antigen encapsulated into nanoparticles and admixed with free TLR7/8 agonist leads to lower immunogenicity and rapid induction of high levels of inflammatory cytokines in the serum (e.g., TNF-a and IL-6 levels are 50- to 200-fold higher upon injection of free resiquimod (R848) than of nanoparticle-encapsulated R848). Conversely, local immune stimulation as evidenced by cellular infiltration of draining lymph nodes and by intranodal cytokine production was more pronounced and persisted longer when SVP-encapsulated TLR agonists were used. The strong local immune activation achieved using a modular self-assembling nanoparticle platform markedly enhanced immunogenicity and was equally effective whether antigen and adjuvant were co-encapsulated in a single nanoparticle formulation or co-delivered in two separate nanoparticles. Moreover, particle encapsulation enabled the utilization of CpG oligonucleotides with the natural phosphodiester backbone, which are otherwise rapidly hydrolyzed by nucleases in vivo. The use of SVP may enable clinical use of potent TLR agonists as vaccine adjuvants for indications where cellular immunity or robust humoral responses are required. 2014-11-07T15:50:17Z 2014-11-07T15:50:17Z 2014-03 Article http://purl.org/eprint/type/JournalArticle 0264410X http://hdl.handle.net/1721.1/91494 Ilyinskii, Petr O., Christopher J. Roy, Conlin P. O’Neil, Erica A. Browning, Lynnelle A. Pittet, David H. Altreuter, Frank Alexis, et al. “Adjuvant-Carrying Synthetic Vaccine Particles Augment the Immune Response to Encapsulated Antigen and Exhibit Strong Local Immune Activation Without Inducing Systemic Cytokine Release.” Vaccine 32, no. 24 (May 2014): 2882–2895. https://orcid.org/0000-0003-4255-0492 en_US http://dx.doi.org/10.1016/j.vaccine.2014.02.027 Vaccine Creative Commons Attribution http://creativecommons.org/licenses/by-nc-nd/ application/pdf Elsevier Elsevier Open Access |
spellingShingle | Ilyinskii, Petr O. Roy, Christopher J. O'Neil, Conlin P. Browning, Erica A. Pittet, Lynnelle A. Altreuter, David H. Alexis, Frank Tonti, Elena Shi, Jinjun Basto, Pamela Antonia Iannacone, Matteo Radovic-Moreno, Aleksandar F. Farokhzad, Omid C. von Andrian, Ulrich H. Johnston, Lloyd P. M. Kishimoto, Takashi Kei Langer, Robert Adjuvant-carrying synthetic vaccine particles augment the immune response to encapsulated antigen and exhibit strong local immune activation without inducing systemic cytokine release |
title | Adjuvant-carrying synthetic vaccine particles augment the immune response to encapsulated antigen and exhibit strong local immune activation without inducing systemic cytokine release |
title_full | Adjuvant-carrying synthetic vaccine particles augment the immune response to encapsulated antigen and exhibit strong local immune activation without inducing systemic cytokine release |
title_fullStr | Adjuvant-carrying synthetic vaccine particles augment the immune response to encapsulated antigen and exhibit strong local immune activation without inducing systemic cytokine release |
title_full_unstemmed | Adjuvant-carrying synthetic vaccine particles augment the immune response to encapsulated antigen and exhibit strong local immune activation without inducing systemic cytokine release |
title_short | Adjuvant-carrying synthetic vaccine particles augment the immune response to encapsulated antigen and exhibit strong local immune activation without inducing systemic cytokine release |
title_sort | adjuvant carrying synthetic vaccine particles augment the immune response to encapsulated antigen and exhibit strong local immune activation without inducing systemic cytokine release |
url | http://hdl.handle.net/1721.1/91494 https://orcid.org/0000-0003-4255-0492 |
work_keys_str_mv | AT ilyinskiipetro adjuvantcarryingsyntheticvaccineparticlesaugmenttheimmuneresponsetoencapsulatedantigenandexhibitstronglocalimmuneactivationwithoutinducingsystemiccytokinerelease AT roychristopherj adjuvantcarryingsyntheticvaccineparticlesaugmenttheimmuneresponsetoencapsulatedantigenandexhibitstronglocalimmuneactivationwithoutinducingsystemiccytokinerelease AT oneilconlinp adjuvantcarryingsyntheticvaccineparticlesaugmenttheimmuneresponsetoencapsulatedantigenandexhibitstronglocalimmuneactivationwithoutinducingsystemiccytokinerelease AT browningericaa adjuvantcarryingsyntheticvaccineparticlesaugmenttheimmuneresponsetoencapsulatedantigenandexhibitstronglocalimmuneactivationwithoutinducingsystemiccytokinerelease AT pittetlynnellea adjuvantcarryingsyntheticvaccineparticlesaugmenttheimmuneresponsetoencapsulatedantigenandexhibitstronglocalimmuneactivationwithoutinducingsystemiccytokinerelease AT altreuterdavidh adjuvantcarryingsyntheticvaccineparticlesaugmenttheimmuneresponsetoencapsulatedantigenandexhibitstronglocalimmuneactivationwithoutinducingsystemiccytokinerelease AT alexisfrank adjuvantcarryingsyntheticvaccineparticlesaugmenttheimmuneresponsetoencapsulatedantigenandexhibitstronglocalimmuneactivationwithoutinducingsystemiccytokinerelease AT tontielena adjuvantcarryingsyntheticvaccineparticlesaugmenttheimmuneresponsetoencapsulatedantigenandexhibitstronglocalimmuneactivationwithoutinducingsystemiccytokinerelease AT shijinjun adjuvantcarryingsyntheticvaccineparticlesaugmenttheimmuneresponsetoencapsulatedantigenandexhibitstronglocalimmuneactivationwithoutinducingsystemiccytokinerelease AT bastopamelaantonia adjuvantcarryingsyntheticvaccineparticlesaugmenttheimmuneresponsetoencapsulatedantigenandexhibitstronglocalimmuneactivationwithoutinducingsystemiccytokinerelease AT iannaconematteo adjuvantcarryingsyntheticvaccineparticlesaugmenttheimmuneresponsetoencapsulatedantigenandexhibitstronglocalimmuneactivationwithoutinducingsystemiccytokinerelease AT radovicmorenoaleksandarf adjuvantcarryingsyntheticvaccineparticlesaugmenttheimmuneresponsetoencapsulatedantigenandexhibitstronglocalimmuneactivationwithoutinducingsystemiccytokinerelease AT farokhzadomidc adjuvantcarryingsyntheticvaccineparticlesaugmenttheimmuneresponsetoencapsulatedantigenandexhibitstronglocalimmuneactivationwithoutinducingsystemiccytokinerelease AT vonandrianulrichh adjuvantcarryingsyntheticvaccineparticlesaugmenttheimmuneresponsetoencapsulatedantigenandexhibitstronglocalimmuneactivationwithoutinducingsystemiccytokinerelease AT johnstonlloydpm adjuvantcarryingsyntheticvaccineparticlesaugmenttheimmuneresponsetoencapsulatedantigenandexhibitstronglocalimmuneactivationwithoutinducingsystemiccytokinerelease AT kishimototakashikei adjuvantcarryingsyntheticvaccineparticlesaugmenttheimmuneresponsetoencapsulatedantigenandexhibitstronglocalimmuneactivationwithoutinducingsystemiccytokinerelease AT langerrobert adjuvantcarryingsyntheticvaccineparticlesaugmenttheimmuneresponsetoencapsulatedantigenandexhibitstronglocalimmuneactivationwithoutinducingsystemiccytokinerelease |