Linker-free grafting of fluorinated polymeric cross-linked network bilayers for durable reduction of ice adhesion
Thin films of bilayer poly(divinyl benzene) p(DVB)/poly(perfluorodecylacrylate) (p-PFDA) are synthesized via iCVD on steel and silicon substrates. Nanomechanical measurements reveal that the elastic modulus and hardness of the films are enhanced through the bilayer structure and that the adhesion of...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Royal Society of Chemistry
2014
|
Online Access: | http://hdl.handle.net/1721.1/91559 https://orcid.org/0000-0001-6127-1056 https://orcid.org/0000-0001-8323-2779 https://orcid.org/0000-0003-1365-9640 |
Summary: | Thin films of bilayer poly(divinyl benzene) p(DVB)/poly(perfluorodecylacrylate) (p-PFDA) are synthesized via iCVD on steel and silicon substrates. Nanomechanical measurements reveal that the elastic modulus and hardness of the films are enhanced through the bilayer structure and that the adhesion of the films to the substrate is improved via in situ grafting mechanism. The strength of ice adhesion to the treated surfaces is reduced more than six-fold when the substrates are coated with these bilayer polymer networks. |
---|