Experimental Tools to Study Molecular Recognition within the Nanoparticle Corona
Advancements in optical nanosensor development have enabled the design of sensors using synthetic molecular recognition elements through a recently developed method called Corona Phase Molecular Recognition (CoPhMoRe). The synthetic sensors resulting from these design principles are highly selective...
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
MDPI AG
2014
|
Online Access: | http://hdl.handle.net/1721.1/91578 https://orcid.org/0000-0002-5832-8522 https://orcid.org/0000-0003-2592-7956 https://orcid.org/0000-0003-2944-808X https://orcid.org/0000-0002-5166-1410 |
Summary: | Advancements in optical nanosensor development have enabled the design of sensors using synthetic molecular recognition elements through a recently developed method called Corona Phase Molecular Recognition (CoPhMoRe). The synthetic sensors resulting from these design principles are highly selective for specific analytes, and demonstrate remarkable stability for use under a variety of conditions. An essential element of nanosensor development hinges on the ability to understand the interface between nanoparticles and the associated corona phase surrounding the nanosensor, an environment outside of the range of traditional characterization tools, such as NMR. This review discusses the need for new strategies and instrumentation to study the nanoparticle corona, operating in both in vitro and in vivo environments. Approaches to instrumentation must have the capacity to concurrently monitor nanosensor operation and the molecular changes in the corona phase. A detailed overview of new tools for the understanding of CoPhMoRe mechanisms is provided for future applications. |
---|