Functional characterization of flavobacteria rhodopsins reveals a unique class of light-driven chloride pump in bacteria

Light-activated, ion-pumping rhodopsins are broadly distributed among many different bacteria and archaea inhabiting the photic zone of aquatic environments. Bacterial proton- or sodium-translocating rhodopsins can convert light energy into a chemiosmotic force that can be converted into cellular bi...

Full description

Bibliographic Details
Main Authors: Yoshizawa, Susumu, Kumagai, Yohei, Kim, Hana, Ogura, Yoshitoshi, Hayashi, Tetsuya, Iwasaki, Wataru, DeLong, Edward, Kogure, Kazuhiro
Other Authors: Massachusetts Institute of Technology. Department of Biological Engineering
Format: Article
Language:en_US
Published: National Academy of Sciences (U.S.) 2014
Online Access:http://hdl.handle.net/1721.1/91985
Description
Summary:Light-activated, ion-pumping rhodopsins are broadly distributed among many different bacteria and archaea inhabiting the photic zone of aquatic environments. Bacterial proton- or sodium-translocating rhodopsins can convert light energy into a chemiosmotic force that can be converted into cellular biochemical energy, and thus represent a widespread alternative form of photoheterotrophy. Here we report that the genome of the marine flavobacterium Nonlabens marinus S1-08T encodes three different types of rhodopsins: Nonlabens marinus rhodopsin 1 (NM-R1), Nonlabens marinus rhodopsin 2 (NM-R2), and Nonlabens marinus rhodopsin 3 (NM-R3). Our functional analysis demonstrated that NM-R1 and NM-R2 are light-driven outward-translocating H+ and Na+ pumps, respectively. Functional analyses further revealed that the light-activated NM-R3 rhodopsin pumps Cl− ions into the cell, representing the first chloride-pumping rhodopsin uncovered in a marine bacterium. Phylogenetic analysis revealed that NM-R3 belongs to a distinct phylogenetic lineage quite distant from archaeal inward Cl−-pumping rhodopsins like halorhodopsin, suggesting that different types of chloride-pumping rhodopsins have evolved independently within marine bacterial lineages. Taken together, our data suggest that similar to haloarchaea, a considerable variety of rhodopsin types with different ion specificities have evolved in marine bacteria, with individual marine strains containing as many as three functionally different rhodopsins.