Summary: | It has long been recognized that a deeper understanding of cell function, with respect to execution of phenotypic behaviors and their regulation by the extracellular environment, is likely to be achieved by analyzing the underlying molecular processes for individual cells selected from across a population, rather than averages of many cells comprising that population. In recent years, experimental and computational methods for undertaking these analyses have advanced rapidly. In this review, we provide a perspective on both measurement and modeling facets of biochemistry at a single-cell level. Our central focus is on receptor-mediated signaling networks that regulate cell phenotypic functions.
|