Deterministic chaos in Alcator C-Mod edge turbulence

Thesis: S.B., Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 2014.

Bibliographic Details
Main Author: Winters, Victoria R
Other Authors: Anne White.
Format: Thesis
Language:eng
Published: Massachusetts Institute of Technology 2015
Subjects:
Online Access:http://hdl.handle.net/1721.1/92696
_version_ 1826217137071456256
author Winters, Victoria R
author2 Anne White.
author_facet Anne White.
Winters, Victoria R
author_sort Winters, Victoria R
collection MIT
description Thesis: S.B., Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 2014.
first_indexed 2024-09-23T16:58:31Z
format Thesis
id mit-1721.1/92696
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T16:58:31Z
publishDate 2015
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/926962019-04-11T08:12:15Z Deterministic chaos in Alcator C-Mod edge turbulence Winters, Victoria R Anne White. Massachusetts Institute of Technology. Department of Nuclear Science and Engineering. Massachusetts Institute of Technology. Department of Nuclear Science and Engineering. Nuclear Science and Engineering. Thesis: S.B., Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 2014. Cataloged from PDF version of thesis. Includes bibliographical references (pages 30-31). Understanding the underlying dynamics of turbulence in magnetic confinement fusion experiments is extremely important. Turbulence greatly reduces the confinement time of these devices and therefore greater knowledge of turbulent dynamics can help with its mitigation. Experiments from the Alcator C-Mod tokamak [18] provide support for a theory that edge turbulence in tokamak fusion plasmas is the result of deterministic chaos, rather than stochastic processes [15]. Using readily available reflectometer data from Alcator C-Mod (C-Mod), analysis of C-Mod edge turbulence in Ohmic plasmas and Ion Cyclotron Range of Frequencies (ICRF) heated L-Mode plasmas shows that density fluctuations just inside or at the Last Closed Flux Surface (LCFS) exhibit exponential power spectra. Theoretically, the characteristic slope of the data on a semi-log plot gives the full width of the underlying Lorentzian pulses, which give rise to the exponential power spectra due to the dynamics of deterministic chaos. Using a separate fitting routine, individual Lorentzian pulses in the reflectometer time series data are identified, and the widths of the Lorentzian pulses match the inverse characteristic frequency of the exponential power spectra. Analysis of the waiting times between pulses and the pulse amplitudes indicate these are randomly distributed yet the pulse widths have a narrow distribution. These characteristics are consistent with a chaotic process. There is also a preliminary comparison of GPI data and a discussion of limitations of the analysis presented here and plans for future work. Overall, the experimental results in this study are consistent with edge turbulence that is at least partially generated by chaotic dynamics. by Victoria R. Winters. S.B. 2015-01-05T20:06:54Z 2015-01-05T20:06:54Z 2014 2014 Thesis http://hdl.handle.net/1721.1/92696 898332676 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 36 pages application/pdf Massachusetts Institute of Technology
spellingShingle Nuclear Science and Engineering.
Winters, Victoria R
Deterministic chaos in Alcator C-Mod edge turbulence
title Deterministic chaos in Alcator C-Mod edge turbulence
title_full Deterministic chaos in Alcator C-Mod edge turbulence
title_fullStr Deterministic chaos in Alcator C-Mod edge turbulence
title_full_unstemmed Deterministic chaos in Alcator C-Mod edge turbulence
title_short Deterministic chaos in Alcator C-Mod edge turbulence
title_sort deterministic chaos in alcator c mod edge turbulence
topic Nuclear Science and Engineering.
url http://hdl.handle.net/1721.1/92696
work_keys_str_mv AT wintersvictoriar deterministicchaosinalcatorcmodedgeturbulence