Non-Markovian dynamics of the mixed-state geometric phase of dissipative qubits
We investigate the geometric phase of a two-level atom (qubit) coupled to a bosonic reservoir with Lorentzian spectral density and find that for the non-Markovian dynamics in which the rotating-wave approximation (RWA) is performed, the geometric phase has a π-phase jump at the nodal point. However,...
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
American Physical Society
2015
|
Online Access: | http://hdl.handle.net/1721.1/92810 |
Summary: | We investigate the geometric phase of a two-level atom (qubit) coupled to a bosonic reservoir with Lorentzian spectral density and find that for the non-Markovian dynamics in which the rotating-wave approximation (RWA) is performed, the geometric phase has a π-phase jump at the nodal point. However, the exact result without the RWA given by the hierarchical equations of motion method shows that there is no such phase jump or nodal structure in the geometric phase. Thus our results demonstrate that the counterrotating terms significantly contribute to the geometric phase in the multimode Hamiltonian under certain circumstances. |
---|