Ramsey numbers of cubes versus cliques

The cube graph Q[subscript n] is the skeleton of the n-dimensional cube. It is an n-regular graph on 2[superscript n] vertices. The Ramsey number r(Q[subscript n] ;K[subscript s]) is the minimum N such that every graph of order N contains the cube graph Q[subscript n] or an independent set of order...

Ausführliche Beschreibung

Bibliographische Detailangaben
Hauptverfasser: Conlon, David, Fox, Jacob, Lee, Choongbum, Sudakov, Benny
Weitere Verfasser: Massachusetts Institute of Technology. Department of Mathematics
Format: Artikel
Sprache:en_US
Veröffentlicht: Springer-Verlag/Bolyai Society 2015
Online Zugang:http://hdl.handle.net/1721.1/92844
https://orcid.org/0000-0002-5798-3509
_version_ 1826199421117792256
author Conlon, David
Fox, Jacob
Lee, Choongbum
Sudakov, Benny
author2 Massachusetts Institute of Technology. Department of Mathematics
author_facet Massachusetts Institute of Technology. Department of Mathematics
Conlon, David
Fox, Jacob
Lee, Choongbum
Sudakov, Benny
author_sort Conlon, David
collection MIT
description The cube graph Q[subscript n] is the skeleton of the n-dimensional cube. It is an n-regular graph on 2[superscript n] vertices. The Ramsey number r(Q[subscript n] ;K[subscript s]) is the minimum N such that every graph of order N contains the cube graph Q[subscript n] or an independent set of order s. In 1983, Burr and Erdős asked whether the simple lower bound r(Q[subscript n] ;K[subscript s] )≥(s−1)(2[superscript n] −1)+1 is tight for s fixed and n sufficiently large. We make progress on this problem, obtaining the first upper bound which is within a constant factor of the lower bound.
first_indexed 2024-09-23T11:19:56Z
format Article
id mit-1721.1/92844
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T11:19:56Z
publishDate 2015
publisher Springer-Verlag/Bolyai Society
record_format dspace
spelling mit-1721.1/928442022-10-01T02:51:59Z Ramsey numbers of cubes versus cliques Conlon, David Fox, Jacob Lee, Choongbum Sudakov, Benny Massachusetts Institute of Technology. Department of Mathematics Fox, Jacob Lee, Choongbum The cube graph Q[subscript n] is the skeleton of the n-dimensional cube. It is an n-regular graph on 2[superscript n] vertices. The Ramsey number r(Q[subscript n] ;K[subscript s]) is the minimum N such that every graph of order N contains the cube graph Q[subscript n] or an independent set of order s. In 1983, Burr and Erdős asked whether the simple lower bound r(Q[subscript n] ;K[subscript s] )≥(s−1)(2[superscript n] −1)+1 is tight for s fixed and n sufficiently large. We make progress on this problem, obtaining the first upper bound which is within a constant factor of the lower bound. Swiss National Science Foundation (SNSF grant 200021-149111) United States-Israel Binational Science Foundation Samsung (Firm) (Scholarship) Royal Society (Great Britain) (University Research Fellowship) David & Lucile Packard Foundation (Fellowship) Simons Foundation (Fellowship) NEC Corporation (MIT NEC Corp. award) National Science Foundation (U.S.) (NSF grant DMS-1069197) 2015-01-13T22:22:18Z 2015-01-13T22:22:18Z 2014-11 2012-08 Article http://purl.org/eprint/type/JournalArticle 0209-9683 1439-6912 http://hdl.handle.net/1721.1/92844 Conlon, David, Jacob Fox, Choongbum Lee, and Benny Sudakov. “Ramsey Numbers of Cubes Versus Cliques.” Combinatorica (November 5, 2014). https://orcid.org/0000-0002-5798-3509 en_US http://dx.doi.org/10.1007/s00493-014-3010-x Combinatorica Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf Springer-Verlag/Bolyai Society arXiv
spellingShingle Conlon, David
Fox, Jacob
Lee, Choongbum
Sudakov, Benny
Ramsey numbers of cubes versus cliques
title Ramsey numbers of cubes versus cliques
title_full Ramsey numbers of cubes versus cliques
title_fullStr Ramsey numbers of cubes versus cliques
title_full_unstemmed Ramsey numbers of cubes versus cliques
title_short Ramsey numbers of cubes versus cliques
title_sort ramsey numbers of cubes versus cliques
url http://hdl.handle.net/1721.1/92844
https://orcid.org/0000-0002-5798-3509
work_keys_str_mv AT conlondavid ramseynumbersofcubesversuscliques
AT foxjacob ramseynumbersofcubesversuscliques
AT leechoongbum ramseynumbersofcubesversuscliques
AT sudakovbenny ramseynumbersofcubesversuscliques