Gauge theory and Rasmussen's invariant

Using a version of instanton homology, an integer invariant s[superscript ♯](K) is defined for knots K in S[superscript 3]. This invariant is shown to be equal to Rasmussen's s-invariant. While Rasmussen's invariant provides a lower bound for 2 g(Σ) for any surface Σ in B[superscript 4] wi...

Full description

Bibliographic Details
Main Authors: Kronheimer, P. B., Mrowka, Tomasz S.
Other Authors: Massachusetts Institute of Technology. Department of Mathematics
Format: Article
Language:en_US
Published: Oxford University Press - London Mathematical Society 2015
Online Access:http://hdl.handle.net/1721.1/93159
https://orcid.org/0000-0001-9520-6535
_version_ 1811074533282545664
author Kronheimer, P. B.
Mrowka, Tomasz S.
author2 Massachusetts Institute of Technology. Department of Mathematics
author_facet Massachusetts Institute of Technology. Department of Mathematics
Kronheimer, P. B.
Mrowka, Tomasz S.
author_sort Kronheimer, P. B.
collection MIT
description Using a version of instanton homology, an integer invariant s[superscript ♯](K) is defined for knots K in S[superscript 3]. This invariant is shown to be equal to Rasmussen's s-invariant. While Rasmussen's invariant provides a lower bound for 2 g(Σ) for any surface Σ in B[superscript 4] with boundary K, it is shown in this paper that s[superscript ♯](K) (and therefore s(K)) similarly bounds the genus of such a surface Σ in any homotopy 4-ball.
first_indexed 2024-09-23T09:51:19Z
format Article
id mit-1721.1/93159
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T09:51:19Z
publishDate 2015
publisher Oxford University Press - London Mathematical Society
record_format dspace
spelling mit-1721.1/931592022-09-30T17:13:52Z Gauge theory and Rasmussen's invariant Kronheimer, P. B. Mrowka, Tomasz S. Massachusetts Institute of Technology. Department of Mathematics Mrowka, Tomasz S. Using a version of instanton homology, an integer invariant s[superscript ♯](K) is defined for knots K in S[superscript 3]. This invariant is shown to be equal to Rasmussen's s-invariant. While Rasmussen's invariant provides a lower bound for 2 g(Σ) for any surface Σ in B[superscript 4] with boundary K, it is shown in this paper that s[superscript ♯](K) (and therefore s(K)) similarly bounds the genus of such a surface Σ in any homotopy 4-ball. National Science Foundation (U.S.) (Grant DMS-0805841) 2015-01-22T21:15:24Z 2015-01-22T21:15:24Z 2013-04 2012-08 Article http://purl.org/eprint/type/JournalArticle 1753-8416 1753-8424 http://hdl.handle.net/1721.1/93159 Kronheimer, P. B., and T. S. Mrowka. “Gauge Theory and Rasmussen’s Invariant.” Journal of Topology 6.3 (April 7, 2013): 659–674. https://orcid.org/0000-0001-9520-6535 en_US http://dx.doi.org/10.1112/jtopol/jtt008 Journal of Topology Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf Oxford University Press - London Mathematical Society arXiv
spellingShingle Kronheimer, P. B.
Mrowka, Tomasz S.
Gauge theory and Rasmussen's invariant
title Gauge theory and Rasmussen's invariant
title_full Gauge theory and Rasmussen's invariant
title_fullStr Gauge theory and Rasmussen's invariant
title_full_unstemmed Gauge theory and Rasmussen's invariant
title_short Gauge theory and Rasmussen's invariant
title_sort gauge theory and rasmussen s invariant
url http://hdl.handle.net/1721.1/93159
https://orcid.org/0000-0001-9520-6535
work_keys_str_mv AT kronheimerpb gaugetheoryandrasmussensinvariant
AT mrowkatomaszs gaugetheoryandrasmussensinvariant