Scalability of mass transfer in liquid-liquid flow
We address liquid–liquid mass transfer between immiscible liquids using the system 1-butanol and water, with succinic acid as the mass transfer component. Using this system we evaluate the influence of two-phase flow transitions from Taylor flow to stratified flow and further to dispersed flow at el...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Elsevier B.V.
2015
|
Online Access: | http://hdl.handle.net/1721.1/93160 https://orcid.org/0000-0001-7192-580X |
_version_ | 1826197919931301888 |
---|---|
author | Woitalka, A. Kuhn, S. Jensen, Klavs F. |
author2 | Massachusetts Institute of Technology. Department of Chemical Engineering |
author_facet | Massachusetts Institute of Technology. Department of Chemical Engineering Woitalka, A. Kuhn, S. Jensen, Klavs F. |
author_sort | Woitalka, A. |
collection | MIT |
description | We address liquid–liquid mass transfer between immiscible liquids using the system 1-butanol and water, with succinic acid as the mass transfer component. Using this system we evaluate the influence of two-phase flow transitions from Taylor flow to stratified flow and further to dispersed flow at elevated flow rates. In addition, we address the scale-up behavior of mass transfer coefficients and the extraction efficiency by using reactors on the micro- and the milli-scale. Flow imaging enables us to identify the different flow regimes and to connect them to the trends observed in mass transfer, and the obtained results highlight the dependence of mass transfer on flow patterns. Furthermore, the results show that on the milli-scale fluid–structure interactions are driving the phase dispersion and interfacial mass transfer, and such a reactor design ensures straightforward scalability from the micro- to the milli-scale. |
first_indexed | 2024-09-23T10:56:08Z |
format | Article |
id | mit-1721.1/93160 |
institution | Massachusetts Institute of Technology |
language | en_US |
last_indexed | 2024-09-23T10:56:08Z |
publishDate | 2015 |
publisher | Elsevier B.V. |
record_format | dspace |
spelling | mit-1721.1/931602022-10-01T00:01:18Z Scalability of mass transfer in liquid-liquid flow Woitalka, A. Kuhn, S. Jensen, Klavs F. Massachusetts Institute of Technology. Department of Chemical Engineering Jensen, Klavs F. Jensen, Klavs F. Woitalka, A. Kuhn, S. We address liquid–liquid mass transfer between immiscible liquids using the system 1-butanol and water, with succinic acid as the mass transfer component. Using this system we evaluate the influence of two-phase flow transitions from Taylor flow to stratified flow and further to dispersed flow at elevated flow rates. In addition, we address the scale-up behavior of mass transfer coefficients and the extraction efficiency by using reactors on the micro- and the milli-scale. Flow imaging enables us to identify the different flow regimes and to connect them to the trends observed in mass transfer, and the obtained results highlight the dependence of mass transfer on flow patterns. Furthermore, the results show that on the milli-scale fluid–structure interactions are driving the phase dispersion and interfacial mass transfer, and such a reactor design ensures straightforward scalability from the micro- to the milli-scale. Novartis-MIT Center for Continuous Manufacturing 2015-01-22T21:23:14Z 2015-01-22T21:23:14Z 2014-05 2014-04 Article http://purl.org/eprint/type/JournalArticle 0009-2509 http://hdl.handle.net/1721.1/93160 Woitalka, A., S. Kuhn, and K.F. Jensen. "Scalability of mass transfer in liquid–liquid flow." Chemical Engineering Science 116 (6 September 2014), p.1-8. https://orcid.org/0000-0001-7192-580X en_US http://dx.doi.org/10.1016/j.ces.2014.04.036 Chemical Engineering Science Article is available under a Creative Commons license; see publisher's site for details. http://creativecommons.org/ application/pdf Elsevier B.V. Elsevier Open Access |
spellingShingle | Woitalka, A. Kuhn, S. Jensen, Klavs F. Scalability of mass transfer in liquid-liquid flow |
title | Scalability of mass transfer in liquid-liquid flow |
title_full | Scalability of mass transfer in liquid-liquid flow |
title_fullStr | Scalability of mass transfer in liquid-liquid flow |
title_full_unstemmed | Scalability of mass transfer in liquid-liquid flow |
title_short | Scalability of mass transfer in liquid-liquid flow |
title_sort | scalability of mass transfer in liquid liquid flow |
url | http://hdl.handle.net/1721.1/93160 https://orcid.org/0000-0001-7192-580X |
work_keys_str_mv | AT woitalkaa scalabilityofmasstransferinliquidliquidflow AT kuhns scalabilityofmasstransferinliquidliquidflow AT jensenklavsf scalabilityofmasstransferinliquidliquidflow |