Approximate Bayesian Image Interpretation using Generative Probabilistic Graphics Programs
The idea of computer vision as the Bayesian inverse problem to computer graphics has a long history and an appealing elegance, but it has proved difficult to directly implement. Instead, most vision tasks are approached via complex bottom-up processing pipelines. Here we show that it is possible to...
Autors principals: | Mansinghka, Vikash K., Kulkarni, Tejas Dattatraya, Perov, Yura N., Tenenbaum, Joshua B. |
---|---|
Altres autors: | Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory |
Format: | Article |
Idioma: | en_US |
Publicat: |
Neural Information Processing Systems Foundation
2015
|
Accés en línia: | http://hdl.handle.net/1721.1/93171 https://orcid.org/0000-0002-7077-2765 https://orcid.org/0000-0002-1925-2035 |
Ítems similars
-
Picture: A Probabilistic Programming Language for Scene Perception
per: Kulkarni, Tejas Dattatraya, et al.
Publicat: (2015) -
Deep convolutional inverse graphics network
per: Kohli, Pushmeet, et al.
Publicat: (2017) -
Bayesian synthesis of probabilistic programs for automatic data modeling
per: Saad, Feras A, et al.
Publicat: (2021) -
Stochastic Digital Circuits for Probabilistic Inference
per: Tenenbaum, Joshua B., et al.
Publicat: (2008) -
A probabilistic model of cross-categorization
per: Shafto, Patrick, et al.
Publicat: (2015)