Role of spectral non-idealities in the design of solar thermophotovoltaics
To bridge the gap between theoretically predicted and experimentally demonstrated efficiencies of solar thermophotovoltaics (STPVs), we consider the impact of spectral non-idealities on the efficiency and the optimal design of STPVs over a range of PV bandgaps (0.45-0.80 eV) and optical concentratio...
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Optical Society of America
2015
|
Online Access: | http://hdl.handle.net/1721.1/93172 https://orcid.org/0000-0002-9897-2670 https://orcid.org/0000-0001-7045-1200 |
Summary: | To bridge the gap between theoretically predicted and experimentally demonstrated efficiencies of solar thermophotovoltaics (STPVs), we consider the impact of spectral non-idealities on the efficiency and the optimal design of STPVs over a range of PV bandgaps (0.45-0.80 eV) and optical concentrations (1-3,000x). On the emitter side, we show that suppressing or recycling sub-bandgap radiation is critical. On the absorber side, the relative importance of high solar absorptance versus low thermal emittance depends on the energy balance. Both results are well-described using dimensionless parameters weighting the relative power density above and below the cutoff wavelength. This framework can be used as a guide for materials selection and targeted spectral engineering in STPVs. |
---|