Robust excitons inhabit soft supramolecular nanotubes

Nature's highly efficient light-harvesting antennae, such as those found in green sulfur bacteria, consist of supramolecular building blocks that self-assemble into a hierarchy of close-packed structures. In an effort to mimic the fundamental processes that govern nature’s efficient systems, it...

Full description

Bibliographic Details
Main Authors: Rebentrost, Frank Patrick, Lloyd, Seth, Nelson, Keith Adam, Bawendi, Moungi G., Eisele, Dorthe M., Arias, Dylan H., Fu, Xiaofeng, Bloemsma, Erik A., Steiner, Colby P., Jensen, Russell A., Eisele, Holger, Tokmakoff, Andrei, Nicastro, Daniela, Knoester, Jasper
Other Authors: Massachusetts Institute of Technology. Department of Chemistry
Format: Article
Language:en_US
Published: National Academy of Sciences (U.S.) 2015
Online Access:http://hdl.handle.net/1721.1/93791
https://orcid.org/0000-0003-2220-4365
https://orcid.org/0000-0003-2358-6967
https://orcid.org/0000-0002-2067-6716
https://orcid.org/0000-0001-7804-5418
https://orcid.org/0000-0002-6728-8163
_version_ 1826213162466148352
author Rebentrost, Frank Patrick
Lloyd, Seth
Nelson, Keith Adam
Bawendi, Moungi G.
Eisele, Dorthe M.
Arias, Dylan H.
Fu, Xiaofeng
Bloemsma, Erik A.
Steiner, Colby P.
Jensen, Russell A.
Eisele, Holger
Tokmakoff, Andrei
Nicastro, Daniela
Knoester, Jasper
author2 Massachusetts Institute of Technology. Department of Chemistry
author_facet Massachusetts Institute of Technology. Department of Chemistry
Rebentrost, Frank Patrick
Lloyd, Seth
Nelson, Keith Adam
Bawendi, Moungi G.
Eisele, Dorthe M.
Arias, Dylan H.
Fu, Xiaofeng
Bloemsma, Erik A.
Steiner, Colby P.
Jensen, Russell A.
Eisele, Holger
Tokmakoff, Andrei
Nicastro, Daniela
Knoester, Jasper
author_sort Rebentrost, Frank Patrick
collection MIT
description Nature's highly efficient light-harvesting antennae, such as those found in green sulfur bacteria, consist of supramolecular building blocks that self-assemble into a hierarchy of close-packed structures. In an effort to mimic the fundamental processes that govern nature’s efficient systems, it is important to elucidate the role of each level of hierarchy: from molecule, to supramolecular building block, to close-packed building blocks. Here, we study the impact of hierarchical structure. We present a model system that mirrors nature’s complexity: cylinders self-assembled from cyanine-dye molecules. Our work reveals that even though close-packing may alter the cylinders’ soft mesoscopic structure, robust delocalized excitons are retained: Internal order and strong excitation-transfer interactions—prerequisites for efficient energy transport—are both maintained. Our results suggest that the cylindrical geometry strongly favors robust excitons; it presents a rational design that is potentially key to nature’s high efficiency, allowing construction of efficient light-harvesting devices even from soft, supramolecular materials.
first_indexed 2024-09-23T15:44:19Z
format Article
id mit-1721.1/93791
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T15:44:19Z
publishDate 2015
publisher National Academy of Sciences (U.S.)
record_format dspace
spelling mit-1721.1/937912022-10-02T03:44:53Z Robust excitons inhabit soft supramolecular nanotubes Rebentrost, Frank Patrick Lloyd, Seth Nelson, Keith Adam Bawendi, Moungi G. Eisele, Dorthe M. Arias, Dylan H. Fu, Xiaofeng Bloemsma, Erik A. Steiner, Colby P. Jensen, Russell A. Eisele, Holger Tokmakoff, Andrei Nicastro, Daniela Knoester, Jasper Massachusetts Institute of Technology. Department of Chemistry Massachusetts Institute of Technology. Department of Mechanical Engineering Massachusetts Institute of Technology. Research Laboratory of Electronics Rebentrost, Frank Patrick Lloyd, Seth Nelson, Keith Adam Bawendi, Moungi G. Eisele, Dorthe M. Arias, Dylan H. Steiner, Colby P. Jensen, Russell A. Nature's highly efficient light-harvesting antennae, such as those found in green sulfur bacteria, consist of supramolecular building blocks that self-assemble into a hierarchy of close-packed structures. In an effort to mimic the fundamental processes that govern nature’s efficient systems, it is important to elucidate the role of each level of hierarchy: from molecule, to supramolecular building block, to close-packed building blocks. Here, we study the impact of hierarchical structure. We present a model system that mirrors nature’s complexity: cylinders self-assembled from cyanine-dye molecules. Our work reveals that even though close-packing may alter the cylinders’ soft mesoscopic structure, robust delocalized excitons are retained: Internal order and strong excitation-transfer interactions—prerequisites for efficient energy transport—are both maintained. Our results suggest that the cylindrical geometry strongly favors robust excitons; it presents a rational design that is potentially key to nature’s high efficiency, allowing construction of efficient light-harvesting devices even from soft, supramolecular materials. United States. Dept. of Energy. Office of Basic Energy Sciences (Energy Frontiers Research Center. Grant DE-SC0001088) United States. Dept. of Energy. Center for Excitonics Alexander von Humboldt-Stiftung (Feodor Lynen Research Fellowship) National Science Foundation (U.S.). Graduate Research Fellowship Program United States. Defense Advanced Research Projects Agency 2015-02-05T18:18:08Z 2015-02-05T18:18:08Z 2014-08 2013-12 Article http://purl.org/eprint/type/JournalArticle 0027-8424 1091-6490 http://hdl.handle.net/1721.1/93791 Eisele, Dorthe M., Dylan H. Arias, Xiaofeng Fu, Erik A. Bloemsma, Colby P. Steiner, Russell A. Jensen, Patrick Rebentrost, et al. “Robust Excitons Inhabit Soft Supramolecular Nanotubes.” Proceedings of the National Academy of Sciences 111, no. 33 (August 4, 2014): E3367–E3375. https://orcid.org/0000-0003-2220-4365 https://orcid.org/0000-0003-2358-6967 https://orcid.org/0000-0002-2067-6716 https://orcid.org/0000-0001-7804-5418 https://orcid.org/0000-0002-6728-8163 en_US http://dx.doi.org/10.1073/pnas.1408342111 Proceedings of the National Academy of Sciences of the United States of America Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. application/pdf National Academy of Sciences (U.S.) National Academy of Sciences (U.S.)
spellingShingle Rebentrost, Frank Patrick
Lloyd, Seth
Nelson, Keith Adam
Bawendi, Moungi G.
Eisele, Dorthe M.
Arias, Dylan H.
Fu, Xiaofeng
Bloemsma, Erik A.
Steiner, Colby P.
Jensen, Russell A.
Eisele, Holger
Tokmakoff, Andrei
Nicastro, Daniela
Knoester, Jasper
Robust excitons inhabit soft supramolecular nanotubes
title Robust excitons inhabit soft supramolecular nanotubes
title_full Robust excitons inhabit soft supramolecular nanotubes
title_fullStr Robust excitons inhabit soft supramolecular nanotubes
title_full_unstemmed Robust excitons inhabit soft supramolecular nanotubes
title_short Robust excitons inhabit soft supramolecular nanotubes
title_sort robust excitons inhabit soft supramolecular nanotubes
url http://hdl.handle.net/1721.1/93791
https://orcid.org/0000-0003-2220-4365
https://orcid.org/0000-0003-2358-6967
https://orcid.org/0000-0002-2067-6716
https://orcid.org/0000-0001-7804-5418
https://orcid.org/0000-0002-6728-8163
work_keys_str_mv AT rebentrostfrankpatrick robustexcitonsinhabitsoftsupramolecularnanotubes
AT lloydseth robustexcitonsinhabitsoftsupramolecularnanotubes
AT nelsonkeithadam robustexcitonsinhabitsoftsupramolecularnanotubes
AT bawendimoungig robustexcitonsinhabitsoftsupramolecularnanotubes
AT eiseledorthem robustexcitonsinhabitsoftsupramolecularnanotubes
AT ariasdylanh robustexcitonsinhabitsoftsupramolecularnanotubes
AT fuxiaofeng robustexcitonsinhabitsoftsupramolecularnanotubes
AT bloemsmaerika robustexcitonsinhabitsoftsupramolecularnanotubes
AT steinercolbyp robustexcitonsinhabitsoftsupramolecularnanotubes
AT jensenrussella robustexcitonsinhabitsoftsupramolecularnanotubes
AT eiseleholger robustexcitonsinhabitsoftsupramolecularnanotubes
AT tokmakoffandrei robustexcitonsinhabitsoftsupramolecularnanotubes
AT nicastrodaniela robustexcitonsinhabitsoftsupramolecularnanotubes
AT knoesterjasper robustexcitonsinhabitsoftsupramolecularnanotubes