Experimental characterization of adsorption and transport properties for advanced thermo-adsorptive batteries
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2014.
Main Author: | |
---|---|
Other Authors: | |
Format: | Thesis |
Language: | eng |
Published: |
Massachusetts Institute of Technology
2015
|
Subjects: | |
Online Access: | http://hdl.handle.net/1721.1/93826 |
_version_ | 1826212925481680896 |
---|---|
author | Kim, Hyunho, Ph. D. Massachusetts Institute of Technology |
author2 | Evelyn N. Wang. |
author_facet | Evelyn N. Wang. Kim, Hyunho, Ph. D. Massachusetts Institute of Technology |
author_sort | Kim, Hyunho, Ph. D. Massachusetts Institute of Technology |
collection | MIT |
description | Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2014. |
first_indexed | 2024-09-23T15:40:39Z |
format | Thesis |
id | mit-1721.1/93826 |
institution | Massachusetts Institute of Technology |
language | eng |
last_indexed | 2024-09-23T15:40:39Z |
publishDate | 2015 |
publisher | Massachusetts Institute of Technology |
record_format | dspace |
spelling | mit-1721.1/938262019-04-12T15:28:12Z Experimental characterization of adsorption and transport properties for advanced thermo-adsorptive batteries Kim, Hyunho, Ph. D. Massachusetts Institute of Technology Evelyn N. Wang. James C. Preisig. Massachusetts Institute of Technology. Department of Mechanical Engineering. Massachusetts Institute of Technology. Department of Mechanical Engineering. Mechanical Engineering. Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2014. Cataloged from PDF version of thesis. Includes bibliographical references (pages 77-79). Thermal energy storage has received significant interest for delivering heating and cooling in both transportation and building sectors. It can minimize the use of on-board electric batteries for heating, ventilation and air-conditioning (HVAC) in electric vehicles (EVs) or reduce electricity consumption during peak demand in residential and commercial buildings. A compact and lightweight advanced thermo-adsorptive battery (ATB) is currently being developed to provide both heating and cooling. Additionally, if waste heat or solar energy were used to regenerate the ATB, the mechanical energy to run the cycle for vapor compression and transport, can be eliminated, thus, providing a significant benefit over conventional HVAC systems, especially when provision of electric energy is challenging. We present a detailed characterization of the thermophysical and transport properties of adsorptive materials for the development of the ATB. We discuss the feasibility of using contemporary adsorptive materials, such as zeolite 13X, by carrying out a detailed experimental and theoretical characterization. Enthalpy of desorption of zeolite 13X - water pair was characterized using the state of the art calorimetric technique. The experimental characterization and theoretical modeling of commercially available zeolite 13X (Sigma Aldrich, molecular sieves, 13X, powder, ~2 [mu]m average size) combined with carbon nano-materials, such as functionalized multi-walled carbon nanotube and graphene, are carried out to improve the effective thermal conductivity. Furthermore, we carried out performance characterization of a single-layer adsorption stack for the development of the ATB. Consequently, this thesis can serve as a framework for the development and characterization of adsorption-based thermal storage systems. by Hyunho Kim. S.M. 2015-02-05T18:25:54Z 2015-02-05T18:25:54Z 2014 2014 Thesis http://hdl.handle.net/1721.1/93826 900642605 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 84 pages application/pdf Massachusetts Institute of Technology |
spellingShingle | Mechanical Engineering. Kim, Hyunho, Ph. D. Massachusetts Institute of Technology Experimental characterization of adsorption and transport properties for advanced thermo-adsorptive batteries |
title | Experimental characterization of adsorption and transport properties for advanced thermo-adsorptive batteries |
title_full | Experimental characterization of adsorption and transport properties for advanced thermo-adsorptive batteries |
title_fullStr | Experimental characterization of adsorption and transport properties for advanced thermo-adsorptive batteries |
title_full_unstemmed | Experimental characterization of adsorption and transport properties for advanced thermo-adsorptive batteries |
title_short | Experimental characterization of adsorption and transport properties for advanced thermo-adsorptive batteries |
title_sort | experimental characterization of adsorption and transport properties for advanced thermo adsorptive batteries |
topic | Mechanical Engineering. |
url | http://hdl.handle.net/1721.1/93826 |
work_keys_str_mv | AT kimhyunhophdmassachusettsinstituteoftechnology experimentalcharacterizationofadsorptionandtransportpropertiesforadvancedthermoadsorptivebatteries |