Sparsity-Driven Synthetic Aperture Radar Imaging: Reconstruction, autofocusing, moving targets, and compressed sensing
This article presents a survey of recent research on sparsity-driven synthetic aperture radar (SAR) imaging. In particular, it reviews 1) the analysis and synthesis-based sparse signal representation formulations for SAR image formation together with the associated imaging results, 2) sparsity-based...
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Institute of Electrical and Electronics Engineers (IEEE)
2015
|
Online Access: | http://hdl.handle.net/1721.1/93875 https://orcid.org/0000-0003-0149-5888 |
Summary: | This article presents a survey of recent research on sparsity-driven synthetic aperture radar (SAR) imaging. In particular, it reviews 1) the analysis and synthesis-based sparse signal representation formulations for SAR image formation together with the associated imaging results, 2) sparsity-based methods for wide-angle SAR imaging and anisotropy characterization, 3) sparsity-based methods for joint imaging and autofocusing from data with phase errors, 4) techniques for exploiting sparsity for SAR imaging of scenes containing moving objects, and 5) recent work on compressed sensing (CS)-based analysis and design of SAR sensing missions. |
---|