THE CHANDRA MULTI-WAVELENGTH PROJECT: OPTICAL SPECTROSCOPY AND THE BROADBAND SPECTRAL ENERGY DISTRIBUTIONS OF X-RAY-SELECTED AGNs
From optical spectroscopy of X-ray sources observed as part of the Chandra Multi-wavelength Project (ChaMP), we present redshifts and classifications for a total of 1569 Chandra sources from our targeted spectroscopic follow-up using the FLWO/1.5 m, SAAO/1.9 m, WIYN 3.5 m, CTIO/4 m, KPNO/4 m, Magell...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Institute of Physics/American Astronomical Society
2015
|
Online Access: | http://hdl.handle.net/1721.1/94528 |
_version_ | 1826209323528749056 |
---|---|
author | Trichas, Markos Green, Paul J. Silverman, John D. Aldcroft, Tom Barkhouse, Wayne Cameron, Robert A. Constantin, Anca Ellison, Sara L. Foltz, Craig Haggard, D. Jannuzi, Buell T. Kim, Dong-Woo Mossman, Amy Pérez, Laura M. Romero-Colmenero, Encarni Ruiz, Angel Smith, Malcolm G. Smith, Paul S. Torres, Guillermo Wik, Daniel R. Wilkes, Belinda J. Wolfgang, Angie Marshall, Herman |
author2 | MIT Kavli Institute for Astrophysics and Space Research |
author_facet | MIT Kavli Institute for Astrophysics and Space Research Trichas, Markos Green, Paul J. Silverman, John D. Aldcroft, Tom Barkhouse, Wayne Cameron, Robert A. Constantin, Anca Ellison, Sara L. Foltz, Craig Haggard, D. Jannuzi, Buell T. Kim, Dong-Woo Mossman, Amy Pérez, Laura M. Romero-Colmenero, Encarni Ruiz, Angel Smith, Malcolm G. Smith, Paul S. Torres, Guillermo Wik, Daniel R. Wilkes, Belinda J. Wolfgang, Angie Marshall, Herman |
author_sort | Trichas, Markos |
collection | MIT |
description | From optical spectroscopy of X-ray sources observed as part of the Chandra Multi-wavelength Project (ChaMP), we present redshifts and classifications for a total of 1569 Chandra sources from our targeted spectroscopic follow-up using the FLWO/1.5 m, SAAO/1.9 m, WIYN 3.5 m, CTIO/4 m, KPNO/4 m, Magellan/6.5 m, MMT/6.5 m, and Gemini/8 m telescopes, and from archival Sloan Digital Sky Survey (SDSS) spectroscopy. We classify the optical counterparts as 50% broad-line active galactic nuclei (AGNs), 16% emission line galaxies, 14% absorption line galaxies, and 20% stars. We detect QSOs out to z ~ 5.5 and galaxies out to z ~ 3. We have compiled extensive photometry, including X-ray (ChaMP), ultraviolet (GALEX), optical (SDSS and ChaMP-NOAO/MOSAIC follow-up), near-infrared (UKIDSS, Two Micron All Sky Survey, and ChaMP-CTIO/ISPI follow-up), mid-infrared (WISE), and radio (FIRST and NVSS) bands. Together with our spectroscopic information, this enables us to derive detailed spectral energy distributions (SEDs) for our extragalactic sources. We fit a variety of template SEDs to determine bolometric luminosities, and to constrain AGNs and starburst components where both are present. While ~58% of X-ray Seyferts (10[superscript 42] erg s[superscript –1] < L [subscript 2 – 10] keV <10[superscript 44] erg s[superscript –1]) require a starburst event (>5% starburst contribution to bolometric luminosity) to fit observed photometry only 26% of the X-ray QSO (L 2 – 10 keV >10[superscript 44] erg s[superscript –1]) population appear to have some kind of star formation contribution. This is significantly lower than for the Seyferts, especially if we take into account torus contamination at z > 1 where the majority of our X-ray QSOs lie. In addition, we observe a rapid drop of the percentage of starburst contribution as X-ray luminosity increases. This is consistent with the quenching of star formation by powerful QSOs, as predicted by the merger model, or with a time lag between the peak of star formation and QSO activity. We have tested the hypothesis that there should be a strong connection between X-ray obscuration and star formation but we do not find any association between X-ray column density and star formation rate both in the general population or the star-forming X-ray Seyferts. Our large compilation also allows us to report here the identification of 81 X-ray Bright Optically inactive Galaxies, 78 z > 3 X-ray sources, and eight Type-2 QSO candidates. Also, we have identified the highest redshift (z = 5.4135) X-ray-selected QSO with optical spectroscopy. |
first_indexed | 2024-09-23T14:20:43Z |
format | Article |
id | mit-1721.1/94528 |
institution | Massachusetts Institute of Technology |
language | en_US |
last_indexed | 2024-09-23T14:20:43Z |
publishDate | 2015 |
publisher | Institute of Physics/American Astronomical Society |
record_format | dspace |
spelling | mit-1721.1/945282022-10-01T20:44:42Z THE CHANDRA MULTI-WAVELENGTH PROJECT: OPTICAL SPECTROSCOPY AND THE BROADBAND SPECTRAL ENERGY DISTRIBUTIONS OF X-RAY-SELECTED AGNs Trichas, Markos Green, Paul J. Silverman, John D. Aldcroft, Tom Barkhouse, Wayne Cameron, Robert A. Constantin, Anca Ellison, Sara L. Foltz, Craig Haggard, D. Jannuzi, Buell T. Kim, Dong-Woo Mossman, Amy Pérez, Laura M. Romero-Colmenero, Encarni Ruiz, Angel Smith, Malcolm G. Smith, Paul S. Torres, Guillermo Wik, Daniel R. Wilkes, Belinda J. Wolfgang, Angie Marshall, Herman MIT Kavli Institute for Astrophysics and Space Research Marshall, Herman Lee From optical spectroscopy of X-ray sources observed as part of the Chandra Multi-wavelength Project (ChaMP), we present redshifts and classifications for a total of 1569 Chandra sources from our targeted spectroscopic follow-up using the FLWO/1.5 m, SAAO/1.9 m, WIYN 3.5 m, CTIO/4 m, KPNO/4 m, Magellan/6.5 m, MMT/6.5 m, and Gemini/8 m telescopes, and from archival Sloan Digital Sky Survey (SDSS) spectroscopy. We classify the optical counterparts as 50% broad-line active galactic nuclei (AGNs), 16% emission line galaxies, 14% absorption line galaxies, and 20% stars. We detect QSOs out to z ~ 5.5 and galaxies out to z ~ 3. We have compiled extensive photometry, including X-ray (ChaMP), ultraviolet (GALEX), optical (SDSS and ChaMP-NOAO/MOSAIC follow-up), near-infrared (UKIDSS, Two Micron All Sky Survey, and ChaMP-CTIO/ISPI follow-up), mid-infrared (WISE), and radio (FIRST and NVSS) bands. Together with our spectroscopic information, this enables us to derive detailed spectral energy distributions (SEDs) for our extragalactic sources. We fit a variety of template SEDs to determine bolometric luminosities, and to constrain AGNs and starburst components where both are present. While ~58% of X-ray Seyferts (10[superscript 42] erg s[superscript –1] < L [subscript 2 – 10] keV <10[superscript 44] erg s[superscript –1]) require a starburst event (>5% starburst contribution to bolometric luminosity) to fit observed photometry only 26% of the X-ray QSO (L 2 – 10 keV >10[superscript 44] erg s[superscript –1]) population appear to have some kind of star formation contribution. This is significantly lower than for the Seyferts, especially if we take into account torus contamination at z > 1 where the majority of our X-ray QSOs lie. In addition, we observe a rapid drop of the percentage of starburst contribution as X-ray luminosity increases. This is consistent with the quenching of star formation by powerful QSOs, as predicted by the merger model, or with a time lag between the peak of star formation and QSO activity. We have tested the hypothesis that there should be a strong connection between X-ray obscuration and star formation but we do not find any association between X-ray column density and star formation rate both in the general population or the star-forming X-ray Seyferts. Our large compilation also allows us to report here the identification of 81 X-ray Bright Optically inactive Galaxies, 78 z > 3 X-ray sources, and eight Type-2 QSO candidates. Also, we have identified the highest redshift (z = 5.4135) X-ray-selected QSO with optical spectroscopy. Chandra X-ray Center (U.S.) (Chandra Award Number AR9-0020X) Chandra X-ray Center (U.S.) (Chandra Award Number AR1-12016X) United States. National Aeronautics and Space Administration (contract NAS8-03063) 2015-02-13T16:40:37Z 2015-02-13T16:40:37Z 2012-06 Article http://purl.org/eprint/type/JournalArticle 0067-0049 1538-4365 http://hdl.handle.net/1721.1/94528 Trichas, Markos, Paul J. Green, John D. Silverman, Tom Aldcroft, Wayne Barkhouse, Robert A. Cameron, Anca Constantin, et al. “THE CHANDRA MULTI-WAVELENGTH PROJECT: OPTICAL SPECTROSCOPY AND THE BROADBAND SPECTRAL ENERGY DISTRIBUTIONS OF X-RAY-SELECTED AGNs.” The Astrophysical Journal Supplement Series 200, no. 2 (May 30, 2012): 17.© 2012 American Astronomical Society. en_US http://dx.doi.org/10.1088/0067-0049/200/2/17 Astrophysical Journal Supplement Series Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. application/pdf Institute of Physics/American Astronomical Society American Astronomical Society |
spellingShingle | Trichas, Markos Green, Paul J. Silverman, John D. Aldcroft, Tom Barkhouse, Wayne Cameron, Robert A. Constantin, Anca Ellison, Sara L. Foltz, Craig Haggard, D. Jannuzi, Buell T. Kim, Dong-Woo Mossman, Amy Pérez, Laura M. Romero-Colmenero, Encarni Ruiz, Angel Smith, Malcolm G. Smith, Paul S. Torres, Guillermo Wik, Daniel R. Wilkes, Belinda J. Wolfgang, Angie Marshall, Herman THE CHANDRA MULTI-WAVELENGTH PROJECT: OPTICAL SPECTROSCOPY AND THE BROADBAND SPECTRAL ENERGY DISTRIBUTIONS OF X-RAY-SELECTED AGNs |
title | THE CHANDRA MULTI-WAVELENGTH PROJECT: OPTICAL SPECTROSCOPY AND THE BROADBAND SPECTRAL ENERGY DISTRIBUTIONS OF X-RAY-SELECTED AGNs |
title_full | THE CHANDRA MULTI-WAVELENGTH PROJECT: OPTICAL SPECTROSCOPY AND THE BROADBAND SPECTRAL ENERGY DISTRIBUTIONS OF X-RAY-SELECTED AGNs |
title_fullStr | THE CHANDRA MULTI-WAVELENGTH PROJECT: OPTICAL SPECTROSCOPY AND THE BROADBAND SPECTRAL ENERGY DISTRIBUTIONS OF X-RAY-SELECTED AGNs |
title_full_unstemmed | THE CHANDRA MULTI-WAVELENGTH PROJECT: OPTICAL SPECTROSCOPY AND THE BROADBAND SPECTRAL ENERGY DISTRIBUTIONS OF X-RAY-SELECTED AGNs |
title_short | THE CHANDRA MULTI-WAVELENGTH PROJECT: OPTICAL SPECTROSCOPY AND THE BROADBAND SPECTRAL ENERGY DISTRIBUTIONS OF X-RAY-SELECTED AGNs |
title_sort | chandra multi wavelength project optical spectroscopy and the broadband spectral energy distributions of x ray selected agns |
url | http://hdl.handle.net/1721.1/94528 |
work_keys_str_mv | AT trichasmarkos thechandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT greenpaulj thechandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT silvermanjohnd thechandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT aldcrofttom thechandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT barkhousewayne thechandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT cameronroberta thechandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT constantinanca thechandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT ellisonsaral thechandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT foltzcraig thechandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT haggardd thechandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT jannuzibuellt thechandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT kimdongwoo thechandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT mossmanamy thechandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT perezlauram thechandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT romerocolmeneroencarni thechandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT ruizangel thechandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT smithmalcolmg thechandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT smithpauls thechandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT torresguillermo thechandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT wikdanielr thechandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT wilkesbelindaj thechandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT wolfgangangie thechandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT marshallherman thechandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT trichasmarkos chandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT greenpaulj chandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT silvermanjohnd chandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT aldcrofttom chandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT barkhousewayne chandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT cameronroberta chandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT constantinanca chandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT ellisonsaral chandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT foltzcraig chandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT haggardd chandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT jannuzibuellt chandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT kimdongwoo chandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT mossmanamy chandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT perezlauram chandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT romerocolmeneroencarni chandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT ruizangel chandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT smithmalcolmg chandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT smithpauls chandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT torresguillermo chandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT wikdanielr chandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT wilkesbelindaj chandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT wolfgangangie chandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns AT marshallherman chandramultiwavelengthprojectopticalspectroscopyandthebroadbandspectralenergydistributionsofxrayselectedagns |