Reversibility for efficient computing

Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1999.

Bibliographic Details
Main Author: Frank, Michael Patrick
Other Authors: Thomas F. Knight, Jr.
Format: Thesis
Language:eng
Published: Massachusetts Institute of Technology 2005
Subjects:
Online Access:http://hdl.handle.net/1721.1/9464
_version_ 1811096550347112448
author Frank, Michael Patrick
author2 Thomas F. Knight, Jr.
author_facet Thomas F. Knight, Jr.
Frank, Michael Patrick
author_sort Frank, Michael Patrick
collection MIT
description Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1999.
first_indexed 2024-09-23T16:45:27Z
format Thesis
id mit-1721.1/9464
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T16:45:27Z
publishDate 2005
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/94642020-03-31T14:33:22Z Reversibility for efficient computing Frank, Michael Patrick Thomas F. Knight, Jr. Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science Electrical Engineering and Computer Science Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1999. Includes bibliographical references (p. 391-405). Today's computers are based on irreversible logic devices, which have been known to be fundamentally energy-inefficient for several decades. Recently, alternative reversible logic technologies have improved rapidly, and are now becoming practical. In traditional models of computation, pure reversibility seems to decrease overall computational efficiency; I provide a proof to this effect. However, traditional models ignore important physical constraints on information processing. This thesis gives the first analysis demonstrating that in a realistic model of computation that accounts for thermodynamic issues, as well as other physical constraints, the judicious use of reversible computing can strictly increase asymptotic computational efficiency, as machine sizes increase. I project real benefits for supercomputing at a large (but achievable) scale in the fairly near term. And with proposed future computing technologies, I show that reversibility will benefit computing at all scales. Next, the thesis demonstrates that reversible computing techniques do not make computer design much more difficult. I describe how to design asymptotically efficient processors using an "adiabatic" reversible electronic logic technology that can be built with today's microprocessor fabrication processes. I describe a simple universal reversible parallel processor chip that our group recently fabricated, and a reversible instruction set for a more traditional RISC-style uniprocessor. Finally, I describe techniques for programming reversible computers. I present a high-level language and a compiler suitable for coding efficient reversible algorithms, and I describe a variety of example algorithms, including efficient reversible sorting, searching, arithmetic, matrix, and graph algorithms. As an example application, I present a linear-time, constant-space reversible program for simulating the Schrodinger wave equation of quantum mechanics. by Michael P. Frank. Ph.D. 2005-08-22T18:34:20Z 2005-08-22T18:34:20Z 1999 1999 Thesis http://hdl.handle.net/1721.1/9464 43483299 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 406 p. 32111704 bytes 32111460 bytes application/pdf application/pdf application/pdf Massachusetts Institute of Technology
spellingShingle Electrical Engineering and Computer Science
Frank, Michael Patrick
Reversibility for efficient computing
title Reversibility for efficient computing
title_full Reversibility for efficient computing
title_fullStr Reversibility for efficient computing
title_full_unstemmed Reversibility for efficient computing
title_short Reversibility for efficient computing
title_sort reversibility for efficient computing
topic Electrical Engineering and Computer Science
url http://hdl.handle.net/1721.1/9464
work_keys_str_mv AT frankmichaelpatrick reversibilityforefficientcomputing