Detection and spectroscopy of single CdSe nanocrystallite quantum dots

Includes bibliographical references.

Bibliographic Details
Main Author: Empedocles, Stephen A. (Stephen Alexander), 1969-
Other Authors: Moungi G. Bawendi.
Format: Thesis
Language:eng
Published: Massachusetts Institute of Technology 2005
Subjects:
Online Access:http://hdl.handle.net/1721.1/9487
_version_ 1811084149532917760
author Empedocles, Stephen A. (Stephen Alexander), 1969-
author2 Moungi G. Bawendi.
author_facet Moungi G. Bawendi.
Empedocles, Stephen A. (Stephen Alexander), 1969-
author_sort Empedocles, Stephen A. (Stephen Alexander), 1969-
collection MIT
description Includes bibliographical references.
first_indexed 2024-09-23T12:45:42Z
format Thesis
id mit-1721.1/9487
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T12:45:42Z
publishDate 2005
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/94872019-09-19T21:04:34Z Detection and spectroscopy of single CdSe nanocrystallite quantum dots Spectroscopy of single CdSe nanocrystallite quantum dots Empedocles, Stephen A. (Stephen Alexander), 1969- Moungi G. Bawendi. Massachusetts Institute of Technology. Dept. of Chemistry. Massachusetts Institute of Technology. Department of Chemistry Chemistry. Includes bibliographical references. Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 1999 "June 1999." Semiconductor nanocrystallites, with size dependent optical properties that have generated considerable interest over the past 10 years, are intrinsically difficult to study due to inhomogeneities in ensemble samples. In this thesis, I describe the motivation and development of an experimental program designed to detect and spectrally resolve the fluorescence from single CdSe nanocrystallites. Through these experiments, we uncover many new and unexpected physical phenomena such as ultra-narrow emission linewidths, fluorescence blinking on a timescale of seconds, and spectral shifting over a wide range of time and energy scales (from seconds to minutes and from less than 100[mu]eV to greater than 80me V). Ionization is found to play an important role in the optical characteristics of single nanocrystallites by quenching luminescence and by producing large local electric fields. Stark measurements of single nanocrystallites are able to directly measure local electric fields around individual nanocrystallites, and measure changes in the field that occur coincident with spectral shifts. Stark experiments also reveal a highly polarizable excited state (~105 A3) with a large induced excited state dipole (~80 De bye). Single nanocrystallite line shapes are found to primarily reflect fluctuations in the local field over time, which can be controlled by adjusting the excitation intensity, wavelength, sample temperature, and sample preparation. Measured linewidths can also be controlled by adjusting the integration time or by adding an applied electric field. Polarization spectroscopy is used to probe the nature of the transition dipole from the emitting state, uncovering a degenerate dipole that is oriented isotropically in the x-y plane of the nanocrystallite. The 2-dimensional nature of this dipole allows us to use polarization spectroscopy to directly measure the 3-dimensional orientation of each nanocrystallite within a sample. These experiments have provided a new perspective on the physics and dynamics of CdSe nanocrystallites that has been unavailable in ensemble experiments. by Stephen A. Empedocles. Ph.D. 2005-08-22T18:44:56Z 2005-08-22T18:44:56Z 1999 Thesis http://hdl.handle.net/1721.1/9487 43600651 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 204 p. 18830173 bytes 18829930 bytes application/pdf application/pdf application/pdf Massachusetts Institute of Technology
spellingShingle Chemistry.
Empedocles, Stephen A. (Stephen Alexander), 1969-
Detection and spectroscopy of single CdSe nanocrystallite quantum dots
title Detection and spectroscopy of single CdSe nanocrystallite quantum dots
title_full Detection and spectroscopy of single CdSe nanocrystallite quantum dots
title_fullStr Detection and spectroscopy of single CdSe nanocrystallite quantum dots
title_full_unstemmed Detection and spectroscopy of single CdSe nanocrystallite quantum dots
title_short Detection and spectroscopy of single CdSe nanocrystallite quantum dots
title_sort detection and spectroscopy of single cdse nanocrystallite quantum dots
topic Chemistry.
url http://hdl.handle.net/1721.1/9487
work_keys_str_mv AT empedoclesstephenastephenalexander1969 detectionandspectroscopyofsinglecdsenanocrystallitequantumdots
AT empedoclesstephenastephenalexander1969 spectroscopyofsinglecdsenanocrystallitequantumdots