THE CHEMICAL EVOLUTION OF PHOSPHORUS

Phosphorus is one of the few remaining light elements for which little is known about its nucleosynthetic origin and chemical evolution, given the lack of optical absorption lines in the spectra of long-lived FGK-type stars. We have identified a P I doublet in the near-ultraviolet (2135/2136 Å) that...

Full description

Bibliographic Details
Main Authors: Jacobson, Heather, Thanathibodee, Thanawuth, Roederer, Ian U., Cescutti, Gabriele, Matteucci, Francesca, Frebel, Anna L.
Other Authors: Massachusetts Institute of Technology. Department of Physics
Format: Article
Language:en_US
Published: IOP Publishing 2015
Online Access:http://hdl.handle.net/1721.1/95453
https://orcid.org/0000-0003-4507-1710
https://orcid.org/0000-0001-7727-1640
https://orcid.org/0000-0002-2139-7145
Description
Summary:Phosphorus is one of the few remaining light elements for which little is known about its nucleosynthetic origin and chemical evolution, given the lack of optical absorption lines in the spectra of long-lived FGK-type stars. We have identified a P I doublet in the near-ultraviolet (2135/2136 Å) that is measurable in stars of low metallicity. Using archival Hubble Space Telescope-Space Telescope Imaging Spectrograph spectra, we have measured P abundances in 13 stars spanning –3.3 ≤ [Fe/H] ≤ -0.2, and obtained an upper limit for a star with [Fe/H] ~ -3.8. Combined with the only other sample of P abundances in solar-type stars in the literature, which spans a range of –1 ≤ [Fe/H] ≤ +0.2, we compare the stellar data to chemical evolution models. Our results support previous indications that massive-star P yields may need to be increased by a factor of a few to match stellar data at all metallicities. Our results also show that hypernovae were important contributors to the P production in the early universe. As P is one of the key building blocks of life, we also discuss the chemical evolution of the important elements to life, C-N-O-P-S, together.