Blade dynamics and flux measurements for model seagrass blades in waves and currents

Thesis: S.M., Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2014.

Bibliographic Details
Main Author: Connor, Erin Grace
Other Authors: Heidi M. Nepf.
Format: Thesis
Language:eng
Published: Massachusetts Institute of Technology 2015
Subjects:
Online Access:http://hdl.handle.net/1721.1/95573
_version_ 1826198143915524096
author Connor, Erin Grace
author2 Heidi M. Nepf.
author_facet Heidi M. Nepf.
Connor, Erin Grace
author_sort Connor, Erin Grace
collection MIT
description Thesis: S.M., Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2014.
first_indexed 2024-09-23T10:59:42Z
format Thesis
id mit-1721.1/95573
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T10:59:42Z
publishDate 2015
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/955732019-04-11T12:35:04Z Blade dynamics and flux measurements for model seagrass blades in waves and currents Connor, Erin Grace Heidi M. Nepf. Massachusetts Institute of Technology. Department of Civil and Environmental Engineering. Massachusetts Institute of Technology. Department of Civil and Environmental Engineering. Civil and Environmental Engineering. Thesis: S.M., Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2014. Cataloged from PDF version of thesis. Includes bibliographical references (pages 113-117). Complex interactions between flow conditions, blade posture, and mass transport processes, represent a challenge to fully understanding the influence of hydrodynamic conditions on the flux of nutrients to the blade surface of submerged aquatic vegetation. To isolate the physical mechanisms from biological processes, model seagrass blades constructed from low-density polyethylene (LDPE) film were used as a laboratory proxy. In accordance with previous studies of LDPE, the balance of the drag force due to fluid motion and the restoring force due to blade stiffness determined the blade posture in unidirectional flow and the relative motion in oscillatory flow. The blade rigidity was adjusted by changing either the blade length or the blade thickness. Horizontal force measurements showed that the reconfiguration of blades in flow resulted in a less than quadratic power-law relation between force and velocity. Specifically, F - U³/⁴. Two techniques and two tracer chemicals (dibromochloromethane and 1,2-dichlorobenzene) for estimating uptake by LDPE, as an analogue to nutrient uptake by seagrass, are described and compared. Mass uptake by blades during flux experiments demonstrated mixed control by both the LDPE-side and water-side mass transfer velocities. In experiments using 1,2-dichlorobenzene, measured uptake was fit to a numerical diffusion model to estimate the water-side transfer velocity. The water-side transfer velocity had a non-linear dependence on velocity in that the rate of increase of the mass transfer velocity decreased with greater blade bending in flow. by Erin Grace Connor. S.M. 2015-02-25T17:11:00Z 2015-02-25T17:11:00Z 2014 2014 Thesis http://hdl.handle.net/1721.1/95573 903591818 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 117 pages application/pdf Massachusetts Institute of Technology
spellingShingle Civil and Environmental Engineering.
Connor, Erin Grace
Blade dynamics and flux measurements for model seagrass blades in waves and currents
title Blade dynamics and flux measurements for model seagrass blades in waves and currents
title_full Blade dynamics and flux measurements for model seagrass blades in waves and currents
title_fullStr Blade dynamics and flux measurements for model seagrass blades in waves and currents
title_full_unstemmed Blade dynamics and flux measurements for model seagrass blades in waves and currents
title_short Blade dynamics and flux measurements for model seagrass blades in waves and currents
title_sort blade dynamics and flux measurements for model seagrass blades in waves and currents
topic Civil and Environmental Engineering.
url http://hdl.handle.net/1721.1/95573
work_keys_str_mv AT connoreringrace bladedynamicsandfluxmeasurementsformodelseagrassbladesinwavesandcurrents