Bidecadal Thermal Changes in the Abyssal Ocean

A dynamically consistent state estimate is used for the period 1992–2011 to describe the changes in oceanic temperatures and heat content, with an emphasis on determining the noise background in the abyssal (below 2000 m) depths. Interpretation requires close attention to the long memory of the deep...

Full description

Bibliographic Details
Main Authors: Heimbach, Patrick, Wunsch, Carl Isaac
Other Authors: Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Format: Article
Language:en_US
Published: American Meteorological Society 2015
Online Access:http://hdl.handle.net/1721.1/95746
https://orcid.org/0000-0001-6808-3664
https://orcid.org/0000-0003-3925-6161
Description
Summary:A dynamically consistent state estimate is used for the period 1992–2011 to describe the changes in oceanic temperatures and heat content, with an emphasis on determining the noise background in the abyssal (below 2000 m) depths. Interpretation requires close attention to the long memory of the deep ocean, implying that meteorological forcing of decades to thousands of years ago should still be producing trendlike changes in abyssal heat content. Much of the deep-ocean volume remained unobserved. At the present time, warming is seen in the deep western Atlantic and Southern Oceans, roughly consistent with those regions of the ocean expected to display the earliest responses to surface disturbances. Parts of the deeper ocean, below 3600 m, show cooling. Most of the variation in the abyssal Pacific Ocean is comparatively featureless, consistent with the slow, diffusive approach to a steady state expected there. In the global average, changes in heat content below 2000 m are roughly 10% of those inferred for the upper ocean over the 20-yr period. A useful global observing strategy for detecting future change has to be designed to account for the different time and spatial scales manifested in the observed changes. If the precision estimates of heat content change are independent of systematic errors, determining oceanic heat uptake values equivalent to 0.1 W m[superscript −2] is possibly attainable over future bidecadal periods.