Near-lunar proton velocity distribution explained by electrostatic acceleration
The observation of parallel ion velocity in the near-lunar wake approximately equal to external solar wind velocity can be explained within uncertainties by an analytic electrostatic expansion model. The one-dimensional model frequently used is inadequate because it does not account for the moon...
Main Author: | |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
American Geophysical Union (AGU)
2015
|
Online Access: | http://hdl.handle.net/1721.1/95829 |
Summary: | The observation of parallel ion velocity in the near-lunar wake approximately equal to external solar wind velocity can be explained within uncertainties by an analytic electrostatic expansion model. The one-dimensional model frequently used is inadequate because it does not account for the moon's spherical shape. However, application of a more recent generalization to three dimensions of the solution along characteristics predicts higher velocities and is probably sufficient to account for the SARA observations on the Chandrayaan-1 spacecraft. |
---|