Experiential lighting : development and validation of perception-based lighting controls

Thesis: Ph. D., Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2014.

Bibliographic Details
Main Author: Aldrich, Matthew (Matthew Henry)
Other Authors: Joseph A. Paradiso.
Format: Thesis
Language:eng
Published: Massachusetts Institute of Technology 2015
Subjects:
Online Access:http://hdl.handle.net/1721.1/95866
_version_ 1826216257953726464
author Aldrich, Matthew (Matthew Henry)
author2 Joseph A. Paradiso.
author_facet Joseph A. Paradiso.
Aldrich, Matthew (Matthew Henry)
author_sort Aldrich, Matthew (Matthew Henry)
collection MIT
description Thesis: Ph. D., Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2014.
first_indexed 2024-09-23T16:44:50Z
format Thesis
id mit-1721.1/95866
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T16:44:50Z
publishDate 2015
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/958662022-01-18T16:26:29Z Experiential lighting : development and validation of perception-based lighting controls Development and validation of perception-based lighting controls Aldrich, Matthew (Matthew Henry) Joseph A. Paradiso. Massachusetts Institute of Technology. Department of Architecture. Program in Media Arts and Sciences. Program in Media Arts and Sciences (Massachusetts Institute of Technology) Architecture. Program in Media Arts and Sciences. Thesis: Ph. D., Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2014. Cataloged from PDF version of thesis. Includes bibliographical references (pages 119-125). Lighting, and its emergence as a digital and networked medium, represents an ideal platform for conducting research on both sensor and human-derived methods of control. Notably, solid-state lighting makes possible the control of the intensity, spatial, and color attributes of lighting in real-time. This technology provides an excellent opportunity to conduct new experiments designed to study how we perceive, judge, and subsequently control illumination. For example, given the near-infinite variation of possible lighting attributes, how might one design an intuitive control system? Moreover, how can one reconcile the objective nature of sensor-based controls with the subjective impressions of humans? How might this approach guide the design of lighting controls and ultimately guide the design of lighting itself? These questions are asked with the benefit of hindsight. Simple control schemes using sliders, knobs, dials, and motion sensors currently in use fail to anticipate human understanding of the controls and the possible effects that changes in illumination will have upon us. In this work, the problem of how humans interact with this new lighting medium is cast as a human-computer interaction. I describe the design and validation of a natural interface for lighting by abstracting the manifold lighting parameters into a simpler set of controls. Conceptually, this "simpler set" is predicated on the theory that we are capable of discerning the similarities and differences between lighting arrangements (scenes). I hypothesize that this natural ordering (a metric space in a latent multidimensional basis) can be quantitatively extracted and analyzed. First, in a series of controlled experiments, I show how one can derive this mapping and I demonstrate, using empirical evidence, how future sensor networks will eventually emulate our subjective impressions of lighting. Second, using data obtained in a user-study, I quantitatively derive performance estimates of my proposed lighting user interface, and statistically contrast these performance results with those obtained using a traditional interface comprised of sliders and buttons. I demonstrate that my approach enables the user to attain their illumination goals while substantially reducing task-time and fatigue. by Matthew Henry Aldrich. Ph. D. 2015-03-05T15:57:38Z 2015-03-05T15:57:38Z 2014 2014 Thesis http://hdl.handle.net/1721.1/95866 904051315 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 125 pages application/pdf Massachusetts Institute of Technology
spellingShingle Architecture. Program in Media Arts and Sciences.
Aldrich, Matthew (Matthew Henry)
Experiential lighting : development and validation of perception-based lighting controls
title Experiential lighting : development and validation of perception-based lighting controls
title_full Experiential lighting : development and validation of perception-based lighting controls
title_fullStr Experiential lighting : development and validation of perception-based lighting controls
title_full_unstemmed Experiential lighting : development and validation of perception-based lighting controls
title_short Experiential lighting : development and validation of perception-based lighting controls
title_sort experiential lighting development and validation of perception based lighting controls
topic Architecture. Program in Media Arts and Sciences.
url http://hdl.handle.net/1721.1/95866
work_keys_str_mv AT aldrichmatthewmatthewhenry experientiallightingdevelopmentandvalidationofperceptionbasedlightingcontrols
AT aldrichmatthewmatthewhenry developmentandvalidationofperceptionbasedlightingcontrols