Local Identification of Nonparametric and Semiparametric Models

In parametric, nonlinear structural models, a classical sufficient condition for local identification, like Fisher (1966) and Rothenberg (1971), is that the vector of moment conditions is differentiable at the true parameter with full rank derivative matrix. We derive an analogous result for the non...

Full description

Bibliographic Details
Main Authors: Chen, Xiaohong, Chernozhukov, Victor V., Lee, Sokbae, Newey, Whitney K.
Other Authors: Massachusetts Institute of Technology. Department of Economics
Format: Article
Language:en_US
Published: John Wiley & Sons, Inc/Econometric Society 2015
Online Access:http://hdl.handle.net/1721.1/96142
https://orcid.org/0000-0002-3250-6714
https://orcid.org/0000-0003-2699-4704
_version_ 1811097439722012672
author Chen, Xiaohong
Chernozhukov, Victor V.
Lee, Sokbae
Newey, Whitney K.
author2 Massachusetts Institute of Technology. Department of Economics
author_facet Massachusetts Institute of Technology. Department of Economics
Chen, Xiaohong
Chernozhukov, Victor V.
Lee, Sokbae
Newey, Whitney K.
author_sort Chen, Xiaohong
collection MIT
description In parametric, nonlinear structural models, a classical sufficient condition for local identification, like Fisher (1966) and Rothenberg (1971), is that the vector of moment conditions is differentiable at the true parameter with full rank derivative matrix. We derive an analogous result for the nonparametric, nonlinear structural models, establishing conditions under which an infinite dimensional analog of the full rank condition is sufficient for local identification. Importantly, we show that additional conditions are often needed in nonlinear, nonparametric models to avoid nonlinearities overwhelming linear effects. We give restrictions on a neighborhood of the true value that are sufficient for local identification. We apply these results to obtain new, primitive identification conditions in several important models, including nonseparable quantile instrumental variable (IV) models and semiparametric consumption-based asset pricing models.
first_indexed 2024-09-23T16:59:34Z
format Article
id mit-1721.1/96142
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T16:59:34Z
publishDate 2015
publisher John Wiley & Sons, Inc/Econometric Society
record_format dspace
spelling mit-1721.1/961422022-10-03T09:37:09Z Local Identification of Nonparametric and Semiparametric Models Chen, Xiaohong Chernozhukov, Victor V. Lee, Sokbae Newey, Whitney K. Massachusetts Institute of Technology. Department of Economics Chernozhukov, Victor V. Newey, Whitney K. In parametric, nonlinear structural models, a classical sufficient condition for local identification, like Fisher (1966) and Rothenberg (1971), is that the vector of moment conditions is differentiable at the true parameter with full rank derivative matrix. We derive an analogous result for the nonparametric, nonlinear structural models, establishing conditions under which an infinite dimensional analog of the full rank condition is sufficient for local identification. Importantly, we show that additional conditions are often needed in nonlinear, nonparametric models to avoid nonlinearities overwhelming linear effects. We give restrictions on a neighborhood of the true value that are sufficient for local identification. We apply these results to obtain new, primitive identification conditions in several important models, including nonseparable quantile instrumental variable (IV) models and semiparametric consumption-based asset pricing models. National Science Foundation (U.S.) (Grant SES-0838161) National Science Foundation (U.S.) (Grant SES-1132399) European Research Council (ERC-2009-StG-240910-ROMETA) National Research Foundation of Korea (NRF-2011-327-B00073) 2015-03-20T19:22:06Z 2015-03-20T19:22:06Z 2014-03 Article http://purl.org/eprint/type/JournalArticle 0012-9682 1468-0262 http://hdl.handle.net/1721.1/96142 Chen, Xiaohong, Victor Chernozhukov, Sokbae Lee, and Whitney K. Newey. “Local Identification of Nonparametric and Semiparametric Models.” Econometrica 82, no. 2 (March 2014): 785–809. https://orcid.org/0000-0002-3250-6714 https://orcid.org/0000-0003-2699-4704 en_US http://dx.doi.org/10.3982/ecta9988 Econometrica Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf John Wiley & Sons, Inc/Econometric Society MIT web domain
spellingShingle Chen, Xiaohong
Chernozhukov, Victor V.
Lee, Sokbae
Newey, Whitney K.
Local Identification of Nonparametric and Semiparametric Models
title Local Identification of Nonparametric and Semiparametric Models
title_full Local Identification of Nonparametric and Semiparametric Models
title_fullStr Local Identification of Nonparametric and Semiparametric Models
title_full_unstemmed Local Identification of Nonparametric and Semiparametric Models
title_short Local Identification of Nonparametric and Semiparametric Models
title_sort local identification of nonparametric and semiparametric models
url http://hdl.handle.net/1721.1/96142
https://orcid.org/0000-0002-3250-6714
https://orcid.org/0000-0003-2699-4704
work_keys_str_mv AT chenxiaohong localidentificationofnonparametricandsemiparametricmodels
AT chernozhukovvictorv localidentificationofnonparametricandsemiparametricmodels
AT leesokbae localidentificationofnonparametricandsemiparametricmodels
AT neweywhitneyk localidentificationofnonparametricandsemiparametricmodels