Extended Møller-Plesset perturbation theory for dynamical and static correlations

We present a novel method that appropriately handles both dynamical and static electron correlations in a balanced manner, using a perturbation theory on a spin-extended Hartree-Fock (EHF) wave function reference. While EHF is a suitable candidate for degenerate systems where static correlation is u...

Full description

Bibliographic Details
Main Authors: Tsuchimochi, Takashi, Van Voorhis, Troy
Other Authors: Massachusetts Institute of Technology. Department of Chemistry
Format: Article
Language:en_US
Published: American Institute of Physics (AIP) 2015
Online Access:http://hdl.handle.net/1721.1/96255
https://orcid.org/0000-0001-7111-0176
Description
Summary:We present a novel method that appropriately handles both dynamical and static electron correlations in a balanced manner, using a perturbation theory on a spin-extended Hartree-Fock (EHF) wave function reference. While EHF is a suitable candidate for degenerate systems where static correlation is ubiquitous, it is known that most of dynamical correlation is neglected in EHF. In this work, we derive a perturbative correction to a fully spin-projected self-consistent wave function based on second-order Møller-Plesset perturbation theory (MP2). The proposed method efficiently captures the ability of EHF to describe static correlation in degeneracy, combined with MP2's ability to treat dynamical correlation effects. We demonstrate drastic improvements on molecular ground state and excited state potential energy curves and singlet-triplet splitting energies over both EHF and MP2 with similar computational effort to the latter.