SO[subscript 2] photolysis as a source for sulfur mass-independent isotope signatures in stratospehric aerosols

Signatures of sulfur isotope mass-independent fractionation (S-MIF) have been observed in stratospheric sulfate aerosols deposited in polar ice. The S-MIF signatures are thought to be associated with stratospheric photochemistry following stratospheric volcanic eruptions, but the exact mechanism res...

Full description

Bibliographic Details
Main Authors: Jiang, B., Guo, H., Whitehill, Andrew Richard, Ono, Shuhei
Other Authors: Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Format: Article
Language:en_US
Published: Copernicus GmbH 2015
Online Access:http://hdl.handle.net/1721.1/96434
https://orcid.org/0000-0001-5996-8217
https://orcid.org/0000-0002-1348-9584
_version_ 1811090914265792512
author Jiang, B.
Guo, H.
Whitehill, Andrew Richard
Ono, Shuhei
author2 Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
author_facet Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Jiang, B.
Guo, H.
Whitehill, Andrew Richard
Ono, Shuhei
author_sort Jiang, B.
collection MIT
description Signatures of sulfur isotope mass-independent fractionation (S-MIF) have been observed in stratospheric sulfate aerosols deposited in polar ice. The S-MIF signatures are thought to be associated with stratospheric photochemistry following stratospheric volcanic eruptions, but the exact mechanism responsible for the production and preservation of these signatures is debated. In order to identify the origin and the mechanism of preservation for these signatures, a series of laboratory photochemical experiments were carried out to investigate the effect of temperature and added O[subscript 2] on the S-MIF produced by two absorption band systems of SO[subscript 2]: photolysis in the 190 to 220 nm region and photoexcitation in the 250 to 350 nm region. The SO[subscript 2] photolysis (SO[subscript 2] + hν → SO + O) experiments showed S-MIF signals with large [superscript 34]S[over [superscript 34S] fractionations, which increases with decreasing temperature. The overall S-MIF pattern observed for photolysis experiments, including high [superscript 34]S[over [superscript 34S] fractionations, positive mass-independent anomalies in [superscript 33]S, and negative anomalies in [superscript 36]S, is consistent with a major contribution from optical isotopologue screening effects and data for stratospheric sulfate aerosols. In contrast, SO[subscript 2] photoexcitation produced products with positive S-MIF anomalies in both [superscript 33]S and [superscript 36]S, which is different from stratospheric sulfate aerosols. SO2 photolysis in the presence of O[subscript 2] produced SO[subscript 3] with S-MIF signals, suggesting the transfer of the S-MIF anomalies from SO to SO[subscript 3] by the SO + O[subscript 2] + M → SO[subscript 3] + M reaction. This is supported with energy calculations of stationary points on the SO[subscript 3] potential energy surfaces, which indicate that this reaction occurs slowly on a single adiabatic surface, but that it can occur more rapidly through intersystem crossing. Based on our experimental results, we estimate a termolecular rate constant on the order of 10−37 cm[superscript 6] molecule[superscript −2] s[superscript −1]. This rate can explain the preservation of mass independent isotope signatures in stratospheric sulfate aerosols and provides a minor, but important, oxidation pathway for stratospheric SO[subscript 2]. The production and preservation of S-MIF signals requires a high SO[subscript 2] column density to allow for optical isotopologue screening effects to occur and to generate a large enough signature that it can be preserved. In addition, the SO[subscript 2] plume must reach an altitude of around 20 to 25 km, where SO[subscript 2] photolysis becomes a dominant process. These experiments are the first step towards understanding the origin of the sulfur isotope anomalies in stratospheric sulfate aerosols.
first_indexed 2024-09-23T14:53:58Z
format Article
id mit-1721.1/96434
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T14:53:58Z
publishDate 2015
publisher Copernicus GmbH
record_format dspace
spelling mit-1721.1/964342022-09-29T11:18:07Z SO[subscript 2] photolysis as a source for sulfur mass-independent isotope signatures in stratospehric aerosols Jiang, B. Guo, H. Whitehill, Andrew Richard Ono, Shuhei Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences Whitehill, Andrew Richard Ono, Shuhei Signatures of sulfur isotope mass-independent fractionation (S-MIF) have been observed in stratospheric sulfate aerosols deposited in polar ice. The S-MIF signatures are thought to be associated with stratospheric photochemistry following stratospheric volcanic eruptions, but the exact mechanism responsible for the production and preservation of these signatures is debated. In order to identify the origin and the mechanism of preservation for these signatures, a series of laboratory photochemical experiments were carried out to investigate the effect of temperature and added O[subscript 2] on the S-MIF produced by two absorption band systems of SO[subscript 2]: photolysis in the 190 to 220 nm region and photoexcitation in the 250 to 350 nm region. The SO[subscript 2] photolysis (SO[subscript 2] + hν → SO + O) experiments showed S-MIF signals with large [superscript 34]S[over [superscript 34S] fractionations, which increases with decreasing temperature. The overall S-MIF pattern observed for photolysis experiments, including high [superscript 34]S[over [superscript 34S] fractionations, positive mass-independent anomalies in [superscript 33]S, and negative anomalies in [superscript 36]S, is consistent with a major contribution from optical isotopologue screening effects and data for stratospheric sulfate aerosols. In contrast, SO[subscript 2] photoexcitation produced products with positive S-MIF anomalies in both [superscript 33]S and [superscript 36]S, which is different from stratospheric sulfate aerosols. SO2 photolysis in the presence of O[subscript 2] produced SO[subscript 3] with S-MIF signals, suggesting the transfer of the S-MIF anomalies from SO to SO[subscript 3] by the SO + O[subscript 2] + M → SO[subscript 3] + M reaction. This is supported with energy calculations of stationary points on the SO[subscript 3] potential energy surfaces, which indicate that this reaction occurs slowly on a single adiabatic surface, but that it can occur more rapidly through intersystem crossing. Based on our experimental results, we estimate a termolecular rate constant on the order of 10−37 cm[superscript 6] molecule[superscript −2] s[superscript −1]. This rate can explain the preservation of mass independent isotope signatures in stratospheric sulfate aerosols and provides a minor, but important, oxidation pathway for stratospheric SO[subscript 2]. The production and preservation of S-MIF signals requires a high SO[subscript 2] column density to allow for optical isotopologue screening effects to occur and to generate a large enough signature that it can be preserved. In addition, the SO[subscript 2] plume must reach an altitude of around 20 to 25 km, where SO[subscript 2] photolysis becomes a dominant process. These experiments are the first step towards understanding the origin of the sulfur isotope anomalies in stratospheric sulfate aerosols. United States. National Aeronautics and Space Administration (Exobiology Program. NNX10AR85G) National Science Foundation (U.S.). Frontiers in Earth System Dynamics (Award 1338810) 2015-04-08T17:15:35Z 2015-04-08T17:15:35Z 2015-02 2014-12 Article http://purl.org/eprint/type/JournalArticle 1680-7324 1680-7316 http://hdl.handle.net/1721.1/96434 Whitehill, A. R., B. Jiang, H. Guo, and S. Ono. “SO[subscript 2] Photolysis as a Source for Sulfur Mass-Independent Isotope Signatures in Stratospehric Aerosols.” Atmospheric Chemistry and Physics 15, no. 4 (2015): 1843–1864. https://orcid.org/0000-0001-5996-8217 https://orcid.org/0000-0002-1348-9584 en_US http://dx.doi.org/10.5194/acp-15-1843-2015 Atmospheric Chemistry and Physics Creative Commons Attribution http://creativecommons.org/licenses/by/3.0/ application/pdf Copernicus GmbH Copernicus Publications
spellingShingle Jiang, B.
Guo, H.
Whitehill, Andrew Richard
Ono, Shuhei
SO[subscript 2] photolysis as a source for sulfur mass-independent isotope signatures in stratospehric aerosols
title SO[subscript 2] photolysis as a source for sulfur mass-independent isotope signatures in stratospehric aerosols
title_full SO[subscript 2] photolysis as a source for sulfur mass-independent isotope signatures in stratospehric aerosols
title_fullStr SO[subscript 2] photolysis as a source for sulfur mass-independent isotope signatures in stratospehric aerosols
title_full_unstemmed SO[subscript 2] photolysis as a source for sulfur mass-independent isotope signatures in stratospehric aerosols
title_short SO[subscript 2] photolysis as a source for sulfur mass-independent isotope signatures in stratospehric aerosols
title_sort so subscript 2 photolysis as a source for sulfur mass independent isotope signatures in stratospehric aerosols
url http://hdl.handle.net/1721.1/96434
https://orcid.org/0000-0001-5996-8217
https://orcid.org/0000-0002-1348-9584
work_keys_str_mv AT jiangb sosubscript2photolysisasasourceforsulfurmassindependentisotopesignaturesinstratospehricaerosols
AT guoh sosubscript2photolysisasasourceforsulfurmassindependentisotopesignaturesinstratospehricaerosols
AT whitehillandrewrichard sosubscript2photolysisasasourceforsulfurmassindependentisotopesignaturesinstratospehricaerosols
AT onoshuhei sosubscript2photolysisasasourceforsulfurmassindependentisotopesignaturesinstratospehricaerosols