Electromechanical systems to enhance the usability and diagnostic capabilities of ultrasound imaging

Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2014.

Bibliographic Details
Main Author: Gilbertson, Matthew Wright
Other Authors: Brian Anthony.
Format: Thesis
Language:eng
Published: Massachusetts Institute of Technology 2015
Subjects:
Online Access:http://hdl.handle.net/1721.1/96459
_version_ 1811084616435499008
author Gilbertson, Matthew Wright
author2 Brian Anthony.
author_facet Brian Anthony.
Gilbertson, Matthew Wright
author_sort Gilbertson, Matthew Wright
collection MIT
description Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2014.
first_indexed 2024-09-23T12:54:23Z
format Thesis
id mit-1721.1/96459
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T12:54:23Z
publishDate 2015
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/964592019-04-12T15:38:59Z Electromechanical systems to enhance the usability and diagnostic capabilities of ultrasound imaging Gilbertson, Matthew Wright Brian Anthony. Massachusetts Institute of Technology. Department of Mechanical Engineering. Massachusetts Institute of Technology. Department of Mechanical Engineering. Mechanical Engineering. Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2014. Cataloged from PDF version of thesis. Includes bibliographical references (pages 283-293). Ultrasound is used extensively in medicine to non-invasively examine soft tissues. Compared to computed-tomography (CT) scanning or X-ray imaging, ultrasound is lower-cost, more portable, real time, and subjects neither the caregiver nor the patient to potentially harmful ionizing radiation, which makes it the imaging modality of choice for many medical applications. Common uses include fetal, vascular, and musculoskeletal imaging, as well as biopsy needle insertion guidance. With 165 million ultrasound exams conducted in the United States annually, and an annual US market of $1.3 billion, improvements to the usability and diagnostic capabilities of ultrasound imaging could lead to significant improvements in medical care. Ultrasound is unique because it generally requires significant contact force with the patient. This has a number of important consequences. The contact forces exerted by the ultrasound probe are generally not known, resulting in images that are acquired at non-repeatable levels of compression, which makes sequentially-acquired ultrasound images difficult to compare and reproduce. Contact force has also been implicated as a major risk factor in work-related musculoskeletal disease (WRMSD) amongst ultrasonographers; currently, clinical reports indicate that nearly 90% of sonographers scan in pain. This thesis explores the mechanical design and experimental evaluation of three novel electro-mechanical systems that could be used to enhance the usability and diagnostic capabilities of ultrasound by measuring and/or controlling probe acquisition state (i.e., contact forces, torques, and angles of orientation). The first system, a hand-held servo-driven ball screw stage, improves image repeatability by applying a constant, programmable contact force between the probe and the patient, and attenuates hand tremors by a factor of 10. The second system, a force/torque-measuring ultrasound probe, was used in the first rigorous clinical study to characterize contact forces and torques applied during abdominal scanning. The third device, driven by a voice coil motor, enables high-bandwidth constant force scanning, and was used to measure the elastic modulus of tissue-an indicator of tissue health-at repeatable pre-load forces. by Matthew Wright Gilbertson. Ph. D. 2015-04-08T18:02:33Z 2015-04-08T18:02:33Z 2014 2014 Thesis http://hdl.handle.net/1721.1/96459 905973181 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 293 pages application/pdf Massachusetts Institute of Technology
spellingShingle Mechanical Engineering.
Gilbertson, Matthew Wright
Electromechanical systems to enhance the usability and diagnostic capabilities of ultrasound imaging
title Electromechanical systems to enhance the usability and diagnostic capabilities of ultrasound imaging
title_full Electromechanical systems to enhance the usability and diagnostic capabilities of ultrasound imaging
title_fullStr Electromechanical systems to enhance the usability and diagnostic capabilities of ultrasound imaging
title_full_unstemmed Electromechanical systems to enhance the usability and diagnostic capabilities of ultrasound imaging
title_short Electromechanical systems to enhance the usability and diagnostic capabilities of ultrasound imaging
title_sort electromechanical systems to enhance the usability and diagnostic capabilities of ultrasound imaging
topic Mechanical Engineering.
url http://hdl.handle.net/1721.1/96459
work_keys_str_mv AT gilbertsonmatthewwright electromechanicalsystemstoenhancetheusabilityanddiagnosticcapabilitiesofultrasoundimaging