Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1

The mechanistic target of rapamycin complex 1 (mTORC1) protein kinase is a master growth regulator that responds to multiple environmental cues. Amino acids stimulate, in a Rag-, Ragulator-, and vacuolar adenosine triphosphatase–dependent fashion, the translocation of mTORC1 to the lysosomal surface...

Full description

Bibliographic Details
Main Authors: Plovanich, M. E., Straub, C., Sabatini, B. L., Tsun, Zhi-Yang, Wang, Shuyu, Wolfson, Rachel Laura, Shen, Kuang, Wyant, Gregory Andrew, Yuan, Elizabeth D., Jones, Tony D., Chantranupong, Lynne, Comb, William C., Wang, Tim, Bar-Peled, Liron, Zoncu, Roberto, Kim, Choah, Park, Jiwon, Sabatini, David
Other Authors: Massachusetts Institute of Technology. Department of Biology
Format: Article
Language:en_US
Published: American Association for the Advancement of Science (AAAS) 2015
Online Access:http://hdl.handle.net/1721.1/96751
https://orcid.org/0000-0003-4642-3706
https://orcid.org/0000-0002-9535-7664
https://orcid.org/0000-0002-4227-5163
https://orcid.org/0000-0001-6366-7986
https://orcid.org/0000-0002-1446-7256
https://orcid.org/0000-0001-9388-1633
_version_ 1811070686474534912
author Plovanich, M. E.
Straub, C.
Sabatini, B. L.
Tsun, Zhi-Yang
Wang, Shuyu
Wolfson, Rachel Laura
Shen, Kuang
Wyant, Gregory Andrew
Yuan, Elizabeth D.
Jones, Tony D.
Chantranupong, Lynne
Comb, William C.
Wang, Tim
Bar-Peled, Liron
Zoncu, Roberto
Kim, Choah
Park, Jiwon
Sabatini, David
author2 Massachusetts Institute of Technology. Department of Biology
author_facet Massachusetts Institute of Technology. Department of Biology
Plovanich, M. E.
Straub, C.
Sabatini, B. L.
Tsun, Zhi-Yang
Wang, Shuyu
Wolfson, Rachel Laura
Shen, Kuang
Wyant, Gregory Andrew
Yuan, Elizabeth D.
Jones, Tony D.
Chantranupong, Lynne
Comb, William C.
Wang, Tim
Bar-Peled, Liron
Zoncu, Roberto
Kim, Choah
Park, Jiwon
Sabatini, David
author_sort Plovanich, M. E.
collection MIT
description The mechanistic target of rapamycin complex 1 (mTORC1) protein kinase is a master growth regulator that responds to multiple environmental cues. Amino acids stimulate, in a Rag-, Ragulator-, and vacuolar adenosine triphosphatase–dependent fashion, the translocation of mTORC1 to the lysosomal surface, where it interacts with its activator Rheb. Here, we identify SLC38A9, an uncharacterized protein with sequence similarity to amino acid transporters, as a lysosomal transmembrane protein that interacts with the Rag guanosine triphosphatases (GTPases) and Ragulator in an amino acid–sensitive fashion. SLC38A9 transports arginine with a high Michaelis constant, and loss of SLC38A9 represses mTORC1 activation by amino acids, particularly arginine. Overexpression of SLC38A9 or just its Ragulator-binding domain makes mTORC1 signaling insensitive to amino acid starvation but not to Rag activity. Thus, SLC38A9 functions upstream of the Rag GTPases and is an excellent candidate for being an arginine sensor for the mTORC1 pathway.
first_indexed 2024-09-23T08:39:57Z
format Article
id mit-1721.1/96751
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T08:39:57Z
publishDate 2015
publisher American Association for the Advancement of Science (AAAS)
record_format dspace
spelling mit-1721.1/967512022-09-23T13:39:27Z Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1 Plovanich, M. E. Straub, C. Sabatini, B. L. Tsun, Zhi-Yang Wang, Shuyu Wolfson, Rachel Laura Shen, Kuang Wyant, Gregory Andrew Yuan, Elizabeth D. Jones, Tony D. Chantranupong, Lynne Comb, William C. Wang, Tim Bar-Peled, Liron Zoncu, Roberto Kim, Choah Park, Jiwon Sabatini, David Massachusetts Institute of Technology. Department of Biology Massachusetts Institute of Technology. Department of Chemistry Whitehead Institute for Biomedical Research Koch Institute for Integrative Cancer Research at MIT Tsun, Zhi-Yang Wang, Shuyu Wolfson, Rachel Laura Shen, Kuang Wyant, Gregory Andrew Yuan, Elizabeth D. Jones, Tony D. Chantranupong, Lynne Comb, William C. Wang, Tim Bar-Peled, Liron Zoncu, Roberto Kim, Choah Park, Jiwon Sabatini, David M. The mechanistic target of rapamycin complex 1 (mTORC1) protein kinase is a master growth regulator that responds to multiple environmental cues. Amino acids stimulate, in a Rag-, Ragulator-, and vacuolar adenosine triphosphatase–dependent fashion, the translocation of mTORC1 to the lysosomal surface, where it interacts with its activator Rheb. Here, we identify SLC38A9, an uncharacterized protein with sequence similarity to amino acid transporters, as a lysosomal transmembrane protein that interacts with the Rag guanosine triphosphatases (GTPases) and Ragulator in an amino acid–sensitive fashion. SLC38A9 transports arginine with a high Michaelis constant, and loss of SLC38A9 represses mTORC1 activation by amino acids, particularly arginine. Overexpression of SLC38A9 or just its Ragulator-binding domain makes mTORC1 signaling insensitive to amino acid starvation but not to Rag activity. Thus, SLC38A9 functions upstream of the Rag GTPases and is an excellent candidate for being an arginine sensor for the mTORC1 pathway. National Institutes of Health (U.S.) (Grant R01 CA103866) National Institutes of Health (U.S.) (Grant AI47389) United States. Dept. of Defense (W81XWH-07-0448) National Institutes of Health (U.S.) (Fellowship F30CA180754) National Institutes of Health (U.S.) (Fellowship T32 GM007753) National Institutes of Health (U.S.) (Fellowship F31 AG044064) National Institutes of Health (U.S.) (Fellowship F31CA180271) United States. Dept. of Defense (National Defense Science and Engineering Graduate Fellowship) National Science Foundation (U.S.). Graduate Research Fellowship Program American Cancer Society (Ellison Medical Foundation. Postdoctoral Fellowship PF-13-356-01-TBE) Howard Hughes Medical Institute 2015-04-23T18:19:44Z 2015-04-23T18:19:44Z 2015-01 2014-06 Article http://purl.org/eprint/type/JournalArticle 0036-8075 1095-9203 http://hdl.handle.net/1721.1/96751 Wang, S., Z.-Y. Tsun, R. L. Wolfson, K. Shen, G. A. Wyant, M. E. Plovanich, E. D. Yuan, et al. “Lysosomal Amino Acid Transporter SLC38A9 Signals Arginine Sufficiency to mTORC1.” Science 347, no. 6218 (January 7, 2015): 188–194. https://orcid.org/0000-0003-4642-3706 https://orcid.org/0000-0002-9535-7664 https://orcid.org/0000-0002-4227-5163 https://orcid.org/0000-0001-6366-7986 https://orcid.org/0000-0002-1446-7256 https://orcid.org/0000-0001-9388-1633 en_US http://dx.doi.org/10.1126/science.1257132 Science Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. application/pdf American Association for the Advancement of Science (AAAS) PMC
spellingShingle Plovanich, M. E.
Straub, C.
Sabatini, B. L.
Tsun, Zhi-Yang
Wang, Shuyu
Wolfson, Rachel Laura
Shen, Kuang
Wyant, Gregory Andrew
Yuan, Elizabeth D.
Jones, Tony D.
Chantranupong, Lynne
Comb, William C.
Wang, Tim
Bar-Peled, Liron
Zoncu, Roberto
Kim, Choah
Park, Jiwon
Sabatini, David
Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1
title Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1
title_full Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1
title_fullStr Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1
title_full_unstemmed Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1
title_short Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1
title_sort lysosomal amino acid transporter slc38a9 signals arginine sufficiency to mtorc1
url http://hdl.handle.net/1721.1/96751
https://orcid.org/0000-0003-4642-3706
https://orcid.org/0000-0002-9535-7664
https://orcid.org/0000-0002-4227-5163
https://orcid.org/0000-0001-6366-7986
https://orcid.org/0000-0002-1446-7256
https://orcid.org/0000-0001-9388-1633
work_keys_str_mv AT plovanichme lysosomalaminoacidtransporterslc38a9signalsargininesufficiencytomtorc1
AT straubc lysosomalaminoacidtransporterslc38a9signalsargininesufficiencytomtorc1
AT sabatinibl lysosomalaminoacidtransporterslc38a9signalsargininesufficiencytomtorc1
AT tsunzhiyang lysosomalaminoacidtransporterslc38a9signalsargininesufficiencytomtorc1
AT wangshuyu lysosomalaminoacidtransporterslc38a9signalsargininesufficiencytomtorc1
AT wolfsonrachellaura lysosomalaminoacidtransporterslc38a9signalsargininesufficiencytomtorc1
AT shenkuang lysosomalaminoacidtransporterslc38a9signalsargininesufficiencytomtorc1
AT wyantgregoryandrew lysosomalaminoacidtransporterslc38a9signalsargininesufficiencytomtorc1
AT yuanelizabethd lysosomalaminoacidtransporterslc38a9signalsargininesufficiencytomtorc1
AT jonestonyd lysosomalaminoacidtransporterslc38a9signalsargininesufficiencytomtorc1
AT chantranuponglynne lysosomalaminoacidtransporterslc38a9signalsargininesufficiencytomtorc1
AT combwilliamc lysosomalaminoacidtransporterslc38a9signalsargininesufficiencytomtorc1
AT wangtim lysosomalaminoacidtransporterslc38a9signalsargininesufficiencytomtorc1
AT barpeledliron lysosomalaminoacidtransporterslc38a9signalsargininesufficiencytomtorc1
AT zoncuroberto lysosomalaminoacidtransporterslc38a9signalsargininesufficiencytomtorc1
AT kimchoah lysosomalaminoacidtransporterslc38a9signalsargininesufficiencytomtorc1
AT parkjiwon lysosomalaminoacidtransporterslc38a9signalsargininesufficiencytomtorc1
AT sabatinidavid lysosomalaminoacidtransporterslc38a9signalsargininesufficiencytomtorc1