First High-Convergence Cryogenic Implosion in a Near-Vacuum Hohlraum

Recent experiments on the National Ignition Facility [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] demonstrate that utilizing a near-vacuum hohlraum (low pressure gas-filled) is a viable option for high convergence cryogenic deuterium-tritium (DT) layered capsule implosions. This is made p...

Full description

Bibliographic Details
Main Authors: Berzak Hopkins, L. F., Meezan, N. B., Le Pape, S., Divol, L., Mackinnon, A. J., Ho, D. D., Hohenberger, M., Jones, O. S., Kyrala, G. A., Milovich, J. L., Pak, A., Ralph, J. E., Ross, J. S., Benedetti, L. R., Biener, J., Bionta, R., Bond, E., Bradley, D., Caggiano, J., Callahan, D. A., Cerjan, C. J., Church, J., Clark, D., Doppner, T., Dylla-Spears, R., Eckart, M., Edgell, D., Field, J., Fittinghoff, D. N., Grim, G., Guler, N., Haan, S. W., Hamza, A., Hartouni, E. P., Hatarik, R., Herrmann, H. W., Hinkel, D. E., Hoover, D., Huang, H., Izumi, N., Khan, S. F., Kozioziemski, B., Kroll, J., Ma, T., MacPhee, A. G., McNaney, J., Merrill, F. E., Moody, J. D., Nikroo, A., Patel, P., Robey, H. F., Rygg, J. R., Sater, J., Sayre, D., Schneider, M., Sepke, S., Stadermann, M., Stoeffl, W., Thomas, C., Town, R. P. J., Volegov, P. L., Wild, C., Wilde, C., Woerner, E., Yeamans, C., Yoxall, B., Kilkenny, J. D., Landen, O. L., Hsing, W. W., Edwards, M. J., Gatu Johnson, Maria
Other Authors: Massachusetts Institute of Technology. Plasma Science and Fusion Center
Format: Article
Language:English
Published: American Physical Society 2015
Online Access:http://hdl.handle.net/1721.1/96849
Description
Summary:Recent experiments on the National Ignition Facility [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] demonstrate that utilizing a near-vacuum hohlraum (low pressure gas-filled) is a viable option for high convergence cryogenic deuterium-tritium (DT) layered capsule implosions. This is made possible by using a dense ablator (high-density carbon), which shortens the drive duration needed to achieve high convergence: a measured 40% higher hohlraum efficiency than typical gas-filled hohlraums, which requires less laser energy going into the hohlraum, and an observed better symmetry control than anticipated by standard hydrodynamics simulations. The first series of near-vacuum hohlraum experiments culminated in a 6.8 ns, 1.2 MJ laser pulse driving a 2-shock, high adiabat (α ~ 3.5) cryogenic DT layered high density carbon capsule. This resulted in one of the best performances so far on the NIF relative to laser energy, with a measured primary neutron yield of 1.8×10[superscript 15] neutrons, with 20% calculated alpha heating at convergence ~27×.