First High-Convergence Cryogenic Implosion in a Near-Vacuum Hohlraum
Recent experiments on the National Ignition Facility [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] demonstrate that utilizing a near-vacuum hohlraum (low pressure gas-filled) is a viable option for high convergence cryogenic deuterium-tritium (DT) layered capsule implosions. This is made p...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
American Physical Society
2015
|
Online Access: | http://hdl.handle.net/1721.1/96849 |
_version_ | 1826198741047050240 |
---|---|
author | Berzak Hopkins, L. F. Meezan, N. B. Le Pape, S. Divol, L. Mackinnon, A. J. Ho, D. D. Hohenberger, M. Jones, O. S. Kyrala, G. A. Milovich, J. L. Pak, A. Ralph, J. E. Ross, J. S. Benedetti, L. R. Biener, J. Bionta, R. Bond, E. Bradley, D. Caggiano, J. Callahan, D. A. Cerjan, C. J. Church, J. Clark, D. Doppner, T. Dylla-Spears, R. Eckart, M. Edgell, D. Field, J. Fittinghoff, D. N. Grim, G. Guler, N. Haan, S. W. Hamza, A. Hartouni, E. P. Hatarik, R. Herrmann, H. W. Hinkel, D. E. Hoover, D. Huang, H. Izumi, N. Khan, S. F. Kozioziemski, B. Kroll, J. Ma, T. MacPhee, A. G. McNaney, J. Merrill, F. E. Moody, J. D. Nikroo, A. Patel, P. Robey, H. F. Rygg, J. R. Sater, J. Sayre, D. Schneider, M. Sepke, S. Stadermann, M. Stoeffl, W. Thomas, C. Town, R. P. J. Volegov, P. L. Wild, C. Wilde, C. Woerner, E. Yeamans, C. Yoxall, B. Kilkenny, J. D. Landen, O. L. Hsing, W. W. Edwards, M. J. Gatu Johnson, Maria |
author2 | Massachusetts Institute of Technology. Plasma Science and Fusion Center |
author_facet | Massachusetts Institute of Technology. Plasma Science and Fusion Center Berzak Hopkins, L. F. Meezan, N. B. Le Pape, S. Divol, L. Mackinnon, A. J. Ho, D. D. Hohenberger, M. Jones, O. S. Kyrala, G. A. Milovich, J. L. Pak, A. Ralph, J. E. Ross, J. S. Benedetti, L. R. Biener, J. Bionta, R. Bond, E. Bradley, D. Caggiano, J. Callahan, D. A. Cerjan, C. J. Church, J. Clark, D. Doppner, T. Dylla-Spears, R. Eckart, M. Edgell, D. Field, J. Fittinghoff, D. N. Grim, G. Guler, N. Haan, S. W. Hamza, A. Hartouni, E. P. Hatarik, R. Herrmann, H. W. Hinkel, D. E. Hoover, D. Huang, H. Izumi, N. Khan, S. F. Kozioziemski, B. Kroll, J. Ma, T. MacPhee, A. G. McNaney, J. Merrill, F. E. Moody, J. D. Nikroo, A. Patel, P. Robey, H. F. Rygg, J. R. Sater, J. Sayre, D. Schneider, M. Sepke, S. Stadermann, M. Stoeffl, W. Thomas, C. Town, R. P. J. Volegov, P. L. Wild, C. Wilde, C. Woerner, E. Yeamans, C. Yoxall, B. Kilkenny, J. D. Landen, O. L. Hsing, W. W. Edwards, M. J. Gatu Johnson, Maria |
author_sort | Berzak Hopkins, L. F. |
collection | MIT |
description | Recent experiments on the National Ignition Facility [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] demonstrate that utilizing a near-vacuum hohlraum (low pressure gas-filled) is a viable option for high convergence cryogenic deuterium-tritium (DT) layered capsule implosions. This is made possible by using a dense ablator (high-density carbon), which shortens the drive duration needed to achieve high convergence: a measured 40% higher hohlraum efficiency than typical gas-filled hohlraums, which requires less laser energy going into the hohlraum, and an observed better symmetry control than anticipated by standard hydrodynamics simulations. The first series of near-vacuum hohlraum experiments culminated in a 6.8 ns, 1.2 MJ laser pulse driving a 2-shock, high adiabat (α ~ 3.5) cryogenic DT layered high density carbon capsule. This resulted in one of the best performances so far on the NIF relative to laser energy, with a measured primary neutron yield of 1.8×10[superscript 15] neutrons, with 20% calculated alpha heating at convergence ~27×. |
first_indexed | 2024-09-23T11:09:22Z |
format | Article |
id | mit-1721.1/96849 |
institution | Massachusetts Institute of Technology |
language | English |
last_indexed | 2024-09-23T11:09:22Z |
publishDate | 2015 |
publisher | American Physical Society |
record_format | dspace |
spelling | mit-1721.1/968492022-10-01T01:36:39Z First High-Convergence Cryogenic Implosion in a Near-Vacuum Hohlraum Berzak Hopkins, L. F. Meezan, N. B. Le Pape, S. Divol, L. Mackinnon, A. J. Ho, D. D. Hohenberger, M. Jones, O. S. Kyrala, G. A. Milovich, J. L. Pak, A. Ralph, J. E. Ross, J. S. Benedetti, L. R. Biener, J. Bionta, R. Bond, E. Bradley, D. Caggiano, J. Callahan, D. A. Cerjan, C. J. Church, J. Clark, D. Doppner, T. Dylla-Spears, R. Eckart, M. Edgell, D. Field, J. Fittinghoff, D. N. Grim, G. Guler, N. Haan, S. W. Hamza, A. Hartouni, E. P. Hatarik, R. Herrmann, H. W. Hinkel, D. E. Hoover, D. Huang, H. Izumi, N. Khan, S. F. Kozioziemski, B. Kroll, J. Ma, T. MacPhee, A. G. McNaney, J. Merrill, F. E. Moody, J. D. Nikroo, A. Patel, P. Robey, H. F. Rygg, J. R. Sater, J. Sayre, D. Schneider, M. Sepke, S. Stadermann, M. Stoeffl, W. Thomas, C. Town, R. P. J. Volegov, P. L. Wild, C. Wilde, C. Woerner, E. Yeamans, C. Yoxall, B. Kilkenny, J. D. Landen, O. L. Hsing, W. W. Edwards, M. J. Gatu Johnson, Maria Massachusetts Institute of Technology. Plasma Science and Fusion Center Gatu Johnson, Maria Recent experiments on the National Ignition Facility [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] demonstrate that utilizing a near-vacuum hohlraum (low pressure gas-filled) is a viable option for high convergence cryogenic deuterium-tritium (DT) layered capsule implosions. This is made possible by using a dense ablator (high-density carbon), which shortens the drive duration needed to achieve high convergence: a measured 40% higher hohlraum efficiency than typical gas-filled hohlraums, which requires less laser energy going into the hohlraum, and an observed better symmetry control than anticipated by standard hydrodynamics simulations. The first series of near-vacuum hohlraum experiments culminated in a 6.8 ns, 1.2 MJ laser pulse driving a 2-shock, high adiabat (α ~ 3.5) cryogenic DT layered high density carbon capsule. This resulted in one of the best performances so far on the NIF relative to laser energy, with a measured primary neutron yield of 1.8×10[superscript 15] neutrons, with 20% calculated alpha heating at convergence ~27×. 2015-04-30T12:33:44Z 2015-04-30T12:33:44Z 2015-04 2015-01 2015-04-29T22:00:09Z Article http://purl.org/eprint/type/JournalArticle 0031-9007 1079-7114 http://hdl.handle.net/1721.1/96849 Berzak Hopkins, L. F., et al. "First High-Convergence Cryogenic Implosion in a Near-Vacuum Hohlraum." Phys. Rev. Lett. 114, 175001 (April 2015). © 2015 American Physical Society en http://dx.doi.org/10.1103/PhysRevLett.114.175001 Physical Review Letters Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. American Physical Society application/pdf American Physical Society American Physical Society |
spellingShingle | Berzak Hopkins, L. F. Meezan, N. B. Le Pape, S. Divol, L. Mackinnon, A. J. Ho, D. D. Hohenberger, M. Jones, O. S. Kyrala, G. A. Milovich, J. L. Pak, A. Ralph, J. E. Ross, J. S. Benedetti, L. R. Biener, J. Bionta, R. Bond, E. Bradley, D. Caggiano, J. Callahan, D. A. Cerjan, C. J. Church, J. Clark, D. Doppner, T. Dylla-Spears, R. Eckart, M. Edgell, D. Field, J. Fittinghoff, D. N. Grim, G. Guler, N. Haan, S. W. Hamza, A. Hartouni, E. P. Hatarik, R. Herrmann, H. W. Hinkel, D. E. Hoover, D. Huang, H. Izumi, N. Khan, S. F. Kozioziemski, B. Kroll, J. Ma, T. MacPhee, A. G. McNaney, J. Merrill, F. E. Moody, J. D. Nikroo, A. Patel, P. Robey, H. F. Rygg, J. R. Sater, J. Sayre, D. Schneider, M. Sepke, S. Stadermann, M. Stoeffl, W. Thomas, C. Town, R. P. J. Volegov, P. L. Wild, C. Wilde, C. Woerner, E. Yeamans, C. Yoxall, B. Kilkenny, J. D. Landen, O. L. Hsing, W. W. Edwards, M. J. Gatu Johnson, Maria First High-Convergence Cryogenic Implosion in a Near-Vacuum Hohlraum |
title | First High-Convergence Cryogenic Implosion in a Near-Vacuum Hohlraum |
title_full | First High-Convergence Cryogenic Implosion in a Near-Vacuum Hohlraum |
title_fullStr | First High-Convergence Cryogenic Implosion in a Near-Vacuum Hohlraum |
title_full_unstemmed | First High-Convergence Cryogenic Implosion in a Near-Vacuum Hohlraum |
title_short | First High-Convergence Cryogenic Implosion in a Near-Vacuum Hohlraum |
title_sort | first high convergence cryogenic implosion in a near vacuum hohlraum |
url | http://hdl.handle.net/1721.1/96849 |
work_keys_str_mv | AT berzakhopkinslf firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT meezannb firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT lepapes firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT divoll firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT mackinnonaj firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT hodd firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT hohenbergerm firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT jonesos firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT kyralaga firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT milovichjl firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT paka firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT ralphje firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT rossjs firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT benedettilr firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT bienerj firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT biontar firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT bonde firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT bradleyd firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT caggianoj firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT callahanda firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT cerjancj firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT churchj firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT clarkd firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT doppnert firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT dyllaspearsr firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT eckartm firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT edgelld firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT fieldj firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT fittinghoffdn firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT grimg firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT gulern firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT haansw firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT hamzaa firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT hartouniep firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT hatarikr firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT herrmannhw firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT hinkelde firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT hooverd firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT huangh firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT izumin firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT khansf firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT kozioziemskib firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT krollj firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT mat firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT macpheeag firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT mcnaneyj firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT merrillfe firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT moodyjd firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT nikrooa firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT patelp firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT robeyhf firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT ryggjr firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT saterj firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT sayred firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT schneiderm firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT sepkes firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT stadermannm firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT stoefflw firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT thomasc firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT townrpj firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT volegovpl firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT wildc firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT wildec firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT woernere firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT yeamansc firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT yoxallb firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT kilkennyjd firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT landenol firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT hsingww firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT edwardsmj firsthighconvergencecryogenicimplosioninanearvacuumhohlraum AT gatujohnsonmaria firsthighconvergencecryogenicimplosioninanearvacuumhohlraum |