Quantitative proteomics reveals the dynamics of protein changes during Drosophila oocyte maturation and the oocyte-to-embryo transition
The onset of development is marked by two major, posttranscriptionally controlled, events: oocyte maturation (release of the prophase I primary arrest) and egg activation (release from the secondary meiotic arrest). Using quantitative mass spectrometry, we previously described proteome remodeling du...
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
National Academy of Sciences (U.S.)
2015
|
Online Access: | http://hdl.handle.net/1721.1/96955 https://orcid.org/0000-0002-7934-111X |
Summary: | The onset of development is marked by two major, posttranscriptionally controlled, events: oocyte maturation (release of the prophase I primary arrest) and egg activation (release from the secondary meiotic arrest). Using quantitative mass spectrometry, we previously described proteome remodeling during Drosophila egg activation. Here, we describe our quantitative mass spectrometry-based analysis of the changes in protein levels during Drosophila oocyte maturation. This study presents the first quantitative survey, to our knowledge, of proteome changes accompanying oocyte maturation in any organism and provides a powerful resource for identifying both key regulators and biological processes driving this critical developmental window. We show that Muskelin, found to be up-regulated during oocyte maturation, is required for timely nurse cell nuclei clearing from mature egg chambers. Other proteins up-regulated at maturation are factors needed not only for late oogenesis but also completion of meiosis and early embryogenesis. Interestingly, the down-regulated proteins are predominantly involved in RNA processing, translation, and RNAi. Integrating datasets on the proteome changes at oocyte maturation and egg activation uncovers dynamics in proteome remodeling during the change from oocyte to embryo. Notably, 66 proteins likely act uniquely during late oogenesis, because they are up-regulated at maturation and down-regulated at activation. We find down-regulation of this class of proteins to be mediated partially by APC/C[superscript CORT], a meiosis-specific form of the E3 ligase anaphase promoting complex/cyclosome (APC/C). |
---|