Distributed Power Allocation for Cooperative Wireless Network Localization

Device-to-device (D2D) communication in cellular networks is a promising concept that permits cooperation among mobile devices not only to increase data throughput but also to enhance localization services. In those networks, the allocation of transmitting power plays a critical role in determining...

Full description

Bibliographic Details
Main Authors: Dai, Wenhan, Shen, Yuan, Win, Moe Z.
Other Authors: Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Format: Article
Language:en_US
Published: Institute of Electrical and Electronics Engineers (IEEE) 2015
Online Access:http://hdl.handle.net/1721.1/97213
https://orcid.org/0000-0002-4100-5508
https://orcid.org/0000-0002-8573-0488
Description
Summary:Device-to-device (D2D) communication in cellular networks is a promising concept that permits cooperation among mobile devices not only to increase data throughput but also to enhance localization services. In those networks, the allocation of transmitting power plays a critical role in determining network lifetime and localization accuracy. Meanwhile, it is a challenging task for implementation in cooperative D2D networks, since each device has only imperfect estimates of local network parameters in distributed settings. In this paper, we establish an optimization framework for robust power allocation in cooperative wireless network localization, and develop distributed power allocation strategies. In particular, we decompose the power allocation problem into infrastructure and cooperation phases, show the sparsity property of the optimal power allocation, and develop efficient power allocation strategies. Simulation results show that these strategies can achieve significant performance improvement in localization accuracy compared to the uniform strategies.