Exponential Asymptotics for Line Solitons in Two-Dimensional Periodic Potentials
As a first step toward a fully two-dimensional asymptotic theory for the bifurcation of solitons from infinitesimal continuous waves, an analytical theory is presented for line solitons, whose envelope varies only along one direction, in general two-dimensional periodic potentials. For this two-dime...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Wiley Blackwell
2015
|
Online Access: | http://hdl.handle.net/1721.1/97216 https://orcid.org/0000-0002-5246-4574 |
Summary: | As a first step toward a fully two-dimensional asymptotic theory for the bifurcation of solitons from infinitesimal continuous waves, an analytical theory is presented for line solitons, whose envelope varies only along one direction, in general two-dimensional periodic potentials. For this two-dimensional problem, it is no longer viable to rely on a certain recurrence relation for going beyond all orders of the usual multiscale perturbation expansion, a key step of the exponential asymptotics procedure previously used for solitons in one-dimensional problems. Instead, we propose a more direct treatment which not only overcomes the recurrence-relation limitation, but also simplifies the exponential asymptotics process. Using this modified technique, we show that line solitons with any rational line slopes bifurcate out from every Bloch-band edge; and for each rational slope, two line-soliton families exist. Furthermore, line solitons can bifurcate from interior points of Bloch bands as well, but such line solitons exist only for a couple of special line angles due to resonance with the Bloch bands. In addition, we show that a countable set of multiline-soliton bound states can be constructed analytically. The analytical predictions are compared with numerical results for both symmetric and asymmetric potentials, and good agreement is obtained. |
---|