Tolerance and adaptive evolution of triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived inhibitors
Background Lignocellulosic biomass has been investigated as a renewable non-food source for production of biofuels. A significant technical challenge to using lignocellulose is the presence of microbial growth inhibitors generated during pretreatment processes. Triacylglycerols (TAGs) are potential...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
BioMed Central
2015
|
Online Access: | http://hdl.handle.net/1721.1/97566 https://orcid.org/0000-0002-1015-1270 |
_version_ | 1826191600807575552 |
---|---|
author | Kurosawa, Kazuhiko Laser, Josephine Sinskey, Anthony J |
author2 | Massachusetts Institute of Technology. Department of Biology |
author_facet | Massachusetts Institute of Technology. Department of Biology Kurosawa, Kazuhiko Laser, Josephine Sinskey, Anthony J |
author_sort | Kurosawa, Kazuhiko |
collection | MIT |
description | Background
Lignocellulosic biomass has been investigated as a renewable non-food source for production of biofuels. A significant technical challenge to using lignocellulose is the presence of microbial growth inhibitors generated during pretreatment processes. Triacylglycerols (TAGs) are potential precursors for lipid-based biofuel production. Rhodococcus opacus MITXM-61 is an oleaginous bacterium capable of producing large amounts of TAGs on high concentrations of glucose and xylose present in lignocellulosic hydrolysates. However, this strain is sensitive to ligonocellulose-derived inhibitors. To understand the toxic effects of the inhibitors in lignocellulosic hydrolysates, strain MITXM-61 was examined for tolerance toward the potential inhibitors and was subjected to adaptive evolution for the resistance to the inhibitors.
Results
We investigated growth-inhibitory effects by potential lignocellulose-derived inhibitors of phenols (lignin, vanillin, 4-hydroxybenzaldehyde (4-HB), syringaldehyde), furans (furfural and 5-hydroxymethyl-2-furaldehyde), and organic acids (levulinic acid, formic acid, and acetic acid) on the growth and TAG production of strain MITXM-61. Phenols and furans exhibited potent inhibitory effects at a concentration of 1 g L[superscript −1], while organic acids had insignificant impacts at concentrations of up to 2 g L[superscript −1]. In an attempt to improve the inhibitor tolerance of strain MITXM-61, we evaluated the adaptation of this strain to the potential inhibitors. Adapted mutants were generated on defined agar media containing lignin, 4-HB, and syringaldehyde. Strain MITXM-61[superscript SHL33] with improved multiple resistance of lignin, 4-HB, and syringaldehyde was constructed through adaptive evolution-based strategies. The evolved strain exhibited a two- to threefold increase in resistance to lignin, 4-HB, and syringaldehyde at 50% growth-inhibitory concentrations, compared to the parental strain. When grown in genuine lignocellulosic hydrolysates of corn stover, wheat straw, and hardwood containing growth inhibitors, strain MITXM-61[superscript SHL33] exhibited a markedly shortened lag phase in comparison with that of strain MITXM-61.
Conclusion
This study provides important clues to overcome the negative effects of inhibitors in lignocellulosic hydrolysates on TAG production of R. opacus cells. The findings can contribute to significant progress in detoxified pretreatment of hydrolysates and development of more efficient strains for industrial TAG fermentations of R. opacus using lignocellulosic biomass. |
first_indexed | 2024-09-23T08:58:46Z |
format | Article |
id | mit-1721.1/97566 |
institution | Massachusetts Institute of Technology |
language | English |
last_indexed | 2024-09-23T08:58:46Z |
publishDate | 2015 |
publisher | BioMed Central |
record_format | dspace |
spelling | mit-1721.1/975662022-09-26T09:34:49Z Tolerance and adaptive evolution of triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived inhibitors Kurosawa, Kazuhiko Laser, Josephine Sinskey, Anthony J Massachusetts Institute of Technology. Department of Biology Massachusetts Institute of Technology. Engineering Systems Division Kurosawa, Kazuhiko Laser, Josephine Sinskey, Anthony J. Background Lignocellulosic biomass has been investigated as a renewable non-food source for production of biofuels. A significant technical challenge to using lignocellulose is the presence of microbial growth inhibitors generated during pretreatment processes. Triacylglycerols (TAGs) are potential precursors for lipid-based biofuel production. Rhodococcus opacus MITXM-61 is an oleaginous bacterium capable of producing large amounts of TAGs on high concentrations of glucose and xylose present in lignocellulosic hydrolysates. However, this strain is sensitive to ligonocellulose-derived inhibitors. To understand the toxic effects of the inhibitors in lignocellulosic hydrolysates, strain MITXM-61 was examined for tolerance toward the potential inhibitors and was subjected to adaptive evolution for the resistance to the inhibitors. Results We investigated growth-inhibitory effects by potential lignocellulose-derived inhibitors of phenols (lignin, vanillin, 4-hydroxybenzaldehyde (4-HB), syringaldehyde), furans (furfural and 5-hydroxymethyl-2-furaldehyde), and organic acids (levulinic acid, formic acid, and acetic acid) on the growth and TAG production of strain MITXM-61. Phenols and furans exhibited potent inhibitory effects at a concentration of 1 g L[superscript −1], while organic acids had insignificant impacts at concentrations of up to 2 g L[superscript −1]. In an attempt to improve the inhibitor tolerance of strain MITXM-61, we evaluated the adaptation of this strain to the potential inhibitors. Adapted mutants were generated on defined agar media containing lignin, 4-HB, and syringaldehyde. Strain MITXM-61[superscript SHL33] with improved multiple resistance of lignin, 4-HB, and syringaldehyde was constructed through adaptive evolution-based strategies. The evolved strain exhibited a two- to threefold increase in resistance to lignin, 4-HB, and syringaldehyde at 50% growth-inhibitory concentrations, compared to the parental strain. When grown in genuine lignocellulosic hydrolysates of corn stover, wheat straw, and hardwood containing growth inhibitors, strain MITXM-61[superscript SHL33] exhibited a markedly shortened lag phase in comparison with that of strain MITXM-61. Conclusion This study provides important clues to overcome the negative effects of inhibitors in lignocellulosic hydrolysates on TAG production of R. opacus cells. The findings can contribute to significant progress in detoxified pretreatment of hydrolysates and development of more efficient strains for industrial TAG fermentations of R. opacus using lignocellulosic biomass. Sweetwater Energy, Inc. MIT Energy Initiative 2015-06-29T18:12:50Z 2015-06-29T18:12:50Z 2015-05 2015-01 2015-06-29T08:40:56Z Article http://purl.org/eprint/type/JournalArticle 1754-6834 http://hdl.handle.net/1721.1/97566 Kurosawa, Kazuhiko, Josephine Laser, and Anthony J Sinskey. “Tolerance and Adaptive Evolution of Triacylglycerol-Producing Rhodococcus Opacus to Lignocellulose-Derived Inhibitors.” Biotechnology for Biofuels 8, no. 1 (2015): 76. https://orcid.org/0000-0002-1015-1270 en http://dx.doi.org/10.1186/s13068-015-0258-3 Biotechnology for Biofuels Kurosawa et al.; licensee BioMed Central. application/pdf BioMed Central |
spellingShingle | Kurosawa, Kazuhiko Laser, Josephine Sinskey, Anthony J Tolerance and adaptive evolution of triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived inhibitors |
title | Tolerance and adaptive evolution of triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived inhibitors |
title_full | Tolerance and adaptive evolution of triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived inhibitors |
title_fullStr | Tolerance and adaptive evolution of triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived inhibitors |
title_full_unstemmed | Tolerance and adaptive evolution of triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived inhibitors |
title_short | Tolerance and adaptive evolution of triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived inhibitors |
title_sort | tolerance and adaptive evolution of triacylglycerol producing rhodococcus opacus to lignocellulose derived inhibitors |
url | http://hdl.handle.net/1721.1/97566 https://orcid.org/0000-0002-1015-1270 |
work_keys_str_mv | AT kurosawakazuhiko toleranceandadaptiveevolutionoftriacylglycerolproducingrhodococcusopacustolignocellulosederivedinhibitors AT laserjosephine toleranceandadaptiveevolutionoftriacylglycerolproducingrhodococcusopacustolignocellulosederivedinhibitors AT sinskeyanthonyj toleranceandadaptiveevolutionoftriacylglycerolproducingrhodococcusopacustolignocellulosederivedinhibitors |