Time-evolving acoustic propagation modeling in a complex ocean environment
During naval operations, sonar performance estimates often need to be computed in-situ with limited environmental information. This calls for the use of fast acoustic propagation models. Many naval operations are carried out in challenging and dynamic environments. This makes acoustic propagation an...
Main Authors: | , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Institute of Electrical and Electronics Engineers (IEEE)
2015
|
Online Access: | http://hdl.handle.net/1721.1/97592 https://orcid.org/0000-0002-1869-3883 https://orcid.org/0000-0003-3518-6901 |
Summary: | During naval operations, sonar performance estimates often need to be computed in-situ with limited environmental information. This calls for the use of fast acoustic propagation models. Many naval operations are carried out in challenging and dynamic environments. This makes acoustic propagation and sonar performance behavior particularly complex and variable, and complicates prediction. Using data from a field experiment, we have investigated the accuracy with which acoustic propagation loss (PL) can be predicted, using only limited modeling capabilities. Environmental input parameters came from various sources that may be available in a typical naval operation. The outer continental shelf shallow-water experimental area featured internal tides, packets of nonlinear internal waves, and a meandering water mass front. For a moored source/receiver pair separated by 19.6 km, the acoustic propagation loss for 800 Hz pulses was computed using the peak amplitude. The variations in sound speed translated into considerable PL variability of order 15 dB. Acoustic loss modeling was carried out using a data-driven regional ocean model as well as measured sound speed profile data for comparison. The acoustic model used a two-dimensional parabolic approximation (vertical and radial outward wavenumbers only). The variance of modeled propagation loss was less than that measured. The effect of the internal tides and sub-tidal features was reasonably well modeled; these made use of measured sound speed data. The effects of nonlinear waves were not well modeled, consistent with their known three-dimensional effects but also with the lack of measurements to initialize and constrain them. |
---|