An improved error bound for reduced basis approximation of linear parabolic problems

We consider a space-time variational formulation for linear parabolic partial differential equations. We introduce an associated Petrov-Galerkin truth finite element discretization with favorable discrete inf-sup constant β[subscript δ], the inverse of which enters into error estimates: β[subscript...

Full description

Bibliographic Details
Main Authors: Urban, Karsten, Patera, Anthony T.
Other Authors: Massachusetts Institute of Technology. Department of Mechanical Engineering
Format: Article
Language:en_US
Published: American Mathematical Society (AMS) 2015
Online Access:http://hdl.handle.net/1721.1/97697
https://orcid.org/0000-0002-2631-6463
Description
Summary:We consider a space-time variational formulation for linear parabolic partial differential equations. We introduce an associated Petrov-Galerkin truth finite element discretization with favorable discrete inf-sup constant β[subscript δ], the inverse of which enters into error estimates: β[subscript δ] is unity for the heat equation; β[subscript δ] decreases only linearly in time for non-coercive (but asymptotically stable) convection operators. The latter in turn permits effective long-time a posteriori error bounds for reduced basis approximations, in sharp contrast to classical (pessimistic) exponentially growing energy estimates. The paper contains a full analysis and various extensions for the formulation introduced briefly by Urban and Patera (2012) as well as numerical results for a model reaction-convection-diffusion equation.