Large-scale, realistic laboratory modeling of M[subscript 2] internal tide generation at the Luzon Strait
The complex double-ridge system in the Luzon Strait in the South China Sea (SCS) is one of the strongest sources of internal tides in the oceans, associated with which are some of the largest amplitude internal solitary waves on record. An issue of debate, however, has been the specific nature of th...
Main Authors: | , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
American Geophysical Union (AGU)
2015
|
Online Access: | http://hdl.handle.net/1721.1/97704 https://orcid.org/0000-0002-7639-0194 https://orcid.org/0000-0003-2548-3937 |
Summary: | The complex double-ridge system in the Luzon Strait in the South China Sea (SCS) is one of the strongest sources of internal tides in the oceans, associated with which are some of the largest amplitude internal solitary waves on record. An issue of debate, however, has been the specific nature of their generation mechanism. To provide insight, we present the results of a large-scale laboratory experiment performed at the Coriolis platform. The experiment was carefully designed so that the relevant dimensionless parameters, which include the excursion parameter, criticality, Rossby, and Froude numbers, closely matched the ocean scenario. The results advocate that a broad and coherent weakly nonlinear, three-dimensional, M[subscript 2] internal tide that is shaped by the overall geometry of the double-ridge system is radiated into the South China Sea and subsequently steepens, as opposed to being generated by a particular feature or localized region within the ridge system. |
---|