Nanoparticles with photoinduced precipitation for the extraction of pollutants from water and soil

Nanotechnology may offer fast and effective solutions for environmental clean-up. Herein, amphiphilic diblock copolymers are used to develop a platform of photosensitive core-shell nanoparticles. Irradiation with ultraviolet light removes the protective layer responsible for colloidal stability; as...

Full description

Bibliographic Details
Main Authors: Brandl, Ferdinand, Bertrand, Nicolas, Lima, Eliana Martins, Langer, Robert S
Other Authors: Harvard University--MIT Division of Health Sciences and Technology
Format: Article
Language:en_US
Published: Nature Publishing Group 2015
Online Access:http://hdl.handle.net/1721.1/97882
https://orcid.org/0000-0003-4255-0492
Description
Summary:Nanotechnology may offer fast and effective solutions for environmental clean-up. Herein, amphiphilic diblock copolymers are used to develop a platform of photosensitive core-shell nanoparticles. Irradiation with ultraviolet light removes the protective layer responsible for colloidal stability; as a result, the nanoparticles are rapidly and irreversibly converted to macroscopic aggregates. The associated phase separation allows measuring the partitioning of small molecules between the aqueous phase and nanoparticles; data suggests that interactions are enhanced by decreasing the particle size. Adsorption onto nanoparticles can be exploited to efficiently remove hydrophobic pollutants from water and contaminated soil. Preliminary in vivo experiments suggest that treatment with photocleavable nanoparticles can significantly reduce the teratogenicity of bisphenol A, triclosan and 17α-ethinyl estradiol without generating obviously toxic byproducts. Small-scale pilot experiments on wastewater, thermal printing paper and contaminated soil demonstrate the applicability of the approach.