Human language reveals a universal positivity bias

Using human evaluation of 100,000 words spread across 24 corpora in 10 languages diverse in origin and culture, we present evidence of a deep imprint of human sociality in language, observing that (i) the words of natural human language possess a universal positivity bias, (ii) the estimated emotion...

Full description

Bibliographic Details
Main Authors: Dodds, Peter Sheridan, Clark, Eric M., Desu, Suma, Reagan, Andrew J., Williams, Jake Ryland, Mitchell, Lewis, Harris, Kameron Decker, Kloumann, Isabel M., Bagrow, James P., Megerdoomian, Karine, McMahon, Matthew T., Tivnan, Brian F., Danforth, Christopher M., Frank, Morgan Ryan
Other Authors: Massachusetts Institute of Technology. Center for Computational Engineering
Format: Article
Language:en_US
Published: National Academy of Sciences (U.S.) 2015
Online Access:http://hdl.handle.net/1721.1/98030
https://orcid.org/0000-0001-9487-9359
_version_ 1826194272831930368
author Dodds, Peter Sheridan
Clark, Eric M.
Desu, Suma
Reagan, Andrew J.
Williams, Jake Ryland
Mitchell, Lewis
Harris, Kameron Decker
Kloumann, Isabel M.
Bagrow, James P.
Megerdoomian, Karine
McMahon, Matthew T.
Tivnan, Brian F.
Danforth, Christopher M.
Frank, Morgan Ryan
author2 Massachusetts Institute of Technology. Center for Computational Engineering
author_facet Massachusetts Institute of Technology. Center for Computational Engineering
Dodds, Peter Sheridan
Clark, Eric M.
Desu, Suma
Reagan, Andrew J.
Williams, Jake Ryland
Mitchell, Lewis
Harris, Kameron Decker
Kloumann, Isabel M.
Bagrow, James P.
Megerdoomian, Karine
McMahon, Matthew T.
Tivnan, Brian F.
Danforth, Christopher M.
Frank, Morgan Ryan
author_sort Dodds, Peter Sheridan
collection MIT
description Using human evaluation of 100,000 words spread across 24 corpora in 10 languages diverse in origin and culture, we present evidence of a deep imprint of human sociality in language, observing that (i) the words of natural human language possess a universal positivity bias, (ii) the estimated emotional content of words is consistent between languages under translation, and (iii) this positivity bias is strongly independent of frequency of word use. Alongside these general regularities, we describe interlanguage variations in the emotional spectrum of languages that allow us to rank corpora. We also show how our word evaluations can be used to construct physical-like instruments for both real-time and offline measurement of the emotional content of large-scale texts.
first_indexed 2024-09-23T09:53:31Z
format Article
id mit-1721.1/98030
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T09:53:31Z
publishDate 2015
publisher National Academy of Sciences (U.S.)
record_format dspace
spelling mit-1721.1/980302022-09-26T14:20:39Z Human language reveals a universal positivity bias Dodds, Peter Sheridan Clark, Eric M. Desu, Suma Reagan, Andrew J. Williams, Jake Ryland Mitchell, Lewis Harris, Kameron Decker Kloumann, Isabel M. Bagrow, James P. Megerdoomian, Karine McMahon, Matthew T. Tivnan, Brian F. Danforth, Christopher M. Frank, Morgan Ryan Massachusetts Institute of Technology. Center for Computational Engineering Massachusetts Institute of Technology. Department of Civil and Environmental Engineering Desu, Suma Frank, Morgan Ryan Using human evaluation of 100,000 words spread across 24 corpora in 10 languages diverse in origin and culture, we present evidence of a deep imprint of human sociality in language, observing that (i) the words of natural human language possess a universal positivity bias, (ii) the estimated emotional content of words is consistent between languages under translation, and (iii) this positivity bias is strongly independent of frequency of word use. Alongside these general regularities, we describe interlanguage variations in the emotional spectrum of languages that allow us to rank corpora. We also show how our word evaluations can be used to construct physical-like instruments for both real-time and offline measurement of the emotional content of large-scale texts. 2015-08-05T14:58:23Z 2015-08-05T14:58:23Z 2015-02 2014-06 Article http://purl.org/eprint/type/JournalArticle 0027-8424 1091-6490 http://hdl.handle.net/1721.1/98030 Dodds, Peter Sheridan, Eric M. Clark, Suma Desu, Morgan R. Frank, Andrew J. Reagan, Jake Ryland Williams, Lewis Mitchell, et al. “Human Language Reveals a Universal Positivity Bias.” Proc Natl Acad Sci USA 112, no. 8 (February 9, 2015): 2389–2394. https://orcid.org/0000-0001-9487-9359 en_US http://dx.doi.org/10.1073/pnas.1411678112 Proceedings of the National Academy of Sciences Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. application/pdf National Academy of Sciences (U.S.) National Academy of Sciences (U.S.)
spellingShingle Dodds, Peter Sheridan
Clark, Eric M.
Desu, Suma
Reagan, Andrew J.
Williams, Jake Ryland
Mitchell, Lewis
Harris, Kameron Decker
Kloumann, Isabel M.
Bagrow, James P.
Megerdoomian, Karine
McMahon, Matthew T.
Tivnan, Brian F.
Danforth, Christopher M.
Frank, Morgan Ryan
Human language reveals a universal positivity bias
title Human language reveals a universal positivity bias
title_full Human language reveals a universal positivity bias
title_fullStr Human language reveals a universal positivity bias
title_full_unstemmed Human language reveals a universal positivity bias
title_short Human language reveals a universal positivity bias
title_sort human language reveals a universal positivity bias
url http://hdl.handle.net/1721.1/98030
https://orcid.org/0000-0001-9487-9359
work_keys_str_mv AT doddspetersheridan humanlanguagerevealsauniversalpositivitybias
AT clarkericm humanlanguagerevealsauniversalpositivitybias
AT desusuma humanlanguagerevealsauniversalpositivitybias
AT reaganandrewj humanlanguagerevealsauniversalpositivitybias
AT williamsjakeryland humanlanguagerevealsauniversalpositivitybias
AT mitchelllewis humanlanguagerevealsauniversalpositivitybias
AT harriskamerondecker humanlanguagerevealsauniversalpositivitybias
AT kloumannisabelm humanlanguagerevealsauniversalpositivitybias
AT bagrowjamesp humanlanguagerevealsauniversalpositivitybias
AT megerdoomiankarine humanlanguagerevealsauniversalpositivitybias
AT mcmahonmatthewt humanlanguagerevealsauniversalpositivitybias
AT tivnanbrianf humanlanguagerevealsauniversalpositivitybias
AT danforthchristopherm humanlanguagerevealsauniversalpositivitybias
AT frankmorganryan humanlanguagerevealsauniversalpositivitybias