Serendipitous discovery of a dying Giant Radio Galaxy associated with NGC 1534, using the Murchison Widefield Array

Recent observations with the Murchison Widefield Array at 185 MHz have serendipitously unveiled a heretofore unknown giant and relatively nearby (z = 0.0178) radio galaxy associated with NGC 1534. The diffuse emission presented here is the first indication that NGC 1534 is one of a rare class of obj...

Full description

Bibliographic Details
Main Authors: Cappallo, Roger J., Corey, Brian E., Goeke, Robert F., Kratzenberg, Eric W., Lonsdale, Colin John, McWhirter, Stephen R., Rogers, Alan E. E., Whitney, Alan R., Hewitt, Jacqueline N., Morgan, Edward H., Williams, Christopher Leigh
Other Authors: Haystack Observatory
Format: Article
Language:en_US
Published: Oxford University Press 2015
Online Access:http://hdl.handle.net/1721.1/98060
https://orcid.org/0000-0002-4117-570X
https://orcid.org/0000-0001-7130-208X
https://orcid.org/0000-0003-1941-7458
Description
Summary:Recent observations with the Murchison Widefield Array at 185 MHz have serendipitously unveiled a heretofore unknown giant and relatively nearby (z = 0.0178) radio galaxy associated with NGC 1534. The diffuse emission presented here is the first indication that NGC 1534 is one of a rare class of objects (along with NGC 5128 and NGC 612) in which a galaxy with a prominent dust lane hosts radio emission on scales of ∼700 kpc. We present details of the radio emission along with a detailed comparison with other radio galaxies with discs. NGC 1534 is the lowest surface brightness radio galaxy known with an estimated scaled 1.4-GHz surface brightness of just 0.2 mJy arcmin[superscript −2]. The radio lobes have one of the steepest spectral indices yet observed: α = −2.1 ± 0.1, and the core to lobe luminosity ratio is <0.1 per cent. We estimate the space density of this low brightness (dying) phase of radio galaxy evolution as 7 × 10[superscript −7] Mpc[superscript −3] and argue that normal AGN cannot spend more than 6 per cent of their lifetime in this phase if they all go through the same cycle.