Top-down constraints on atmospheric mercury emissions and implications for global biogeochemical cycling

We perform global-scale inverse modeling to constrain present-day atmospheric mercury emissions and relevant physiochemical parameters in the GEOS-Chem chemical transport model. We use Bayesian inversion methods combining simulations with GEOS-Chem and ground-based Hg[superscript 0] observations fro...

全面介绍

书目详细资料
Main Authors: Soerensen, A. L., Angot, H., Artz, R., Brooks, S., Brunke, E.-G., Conley, G., Dommergue, A., Ebinghaus, R., Holsen, T. M., Jaffe, D. A., Kang, S., Kelley, P., Luke, W. T., Magand, O., Marumoto, K., Pfaffhuber, K. A., Ren, X., Sheu, G.-R., Slemr, F., Warneke, T., Weigelt, A., Weiss-Penzias, P., Wip, D. C., Zhang, Q., Song, Shaojie, Selin, Noelle E
其他作者: Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
格式: 文件
语言:en_US
出版: Copernicus GmbH 2015
在线阅读:http://hdl.handle.net/1721.1/98104
https://orcid.org/0000-0002-6396-5622
https://orcid.org/0000-0001-6395-7422
_version_ 1826202448894623744
author Soerensen, A. L.
Angot, H.
Artz, R.
Brooks, S.
Brunke, E.-G.
Conley, G.
Dommergue, A.
Ebinghaus, R.
Holsen, T. M.
Jaffe, D. A.
Kang, S.
Kelley, P.
Luke, W. T.
Magand, O.
Marumoto, K.
Pfaffhuber, K. A.
Ren, X.
Sheu, G.-R.
Slemr, F.
Warneke, T.
Weigelt, A.
Weiss-Penzias, P.
Wip, D. C.
Zhang, Q.
Song, Shaojie
Selin, Noelle E
author2 Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
author_facet Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Soerensen, A. L.
Angot, H.
Artz, R.
Brooks, S.
Brunke, E.-G.
Conley, G.
Dommergue, A.
Ebinghaus, R.
Holsen, T. M.
Jaffe, D. A.
Kang, S.
Kelley, P.
Luke, W. T.
Magand, O.
Marumoto, K.
Pfaffhuber, K. A.
Ren, X.
Sheu, G.-R.
Slemr, F.
Warneke, T.
Weigelt, A.
Weiss-Penzias, P.
Wip, D. C.
Zhang, Q.
Song, Shaojie
Selin, Noelle E
author_sort Soerensen, A. L.
collection MIT
description We perform global-scale inverse modeling to constrain present-day atmospheric mercury emissions and relevant physiochemical parameters in the GEOS-Chem chemical transport model. We use Bayesian inversion methods combining simulations with GEOS-Chem and ground-based Hg[superscript 0] observations from regional monitoring networks and individual sites in recent years. Using optimized emissions/parameters, GEOS-Chem better reproduces these ground-based observations and also matches regional over-water Hg[superscript 0] and wet deposition measurements. The optimized global mercury emission to the atmosphere is ~ 5.8 Gg yr[superscript −1]. The ocean accounts for 3.2 Gg yr[superscript −1] (55% of the total), and the terrestrial ecosystem is neither a net source nor a net sink of Hg[superscript 0]. The optimized Asian anthropogenic emission of Hg[superscript 0] (gas elemental mercury) is 650–1770 Mg yr[superscript −1], higher than its bottom-up estimates (550–800 Mg yr[superscript −1]). The ocean parameter inversions suggest that dark oxidation of aqueous elemental mercury is faster, and less mercury is removed from the mixed layer through particle sinking, when compared with current simulations. Parameter changes affect the simulated global ocean mercury budget, particularly mass exchange between the mixed layer and subsurface waters. Based on our inversion results, we re-evaluate the long-term global biogeochemical cycle of mercury, and show that legacy mercury becomes more likely to reside in the terrestrial ecosystem than in the ocean. We estimate that primary anthropogenic mercury contributes up to 23 % of present-day atmospheric deposition.
first_indexed 2024-09-23T12:07:38Z
format Article
id mit-1721.1/98104
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T12:07:38Z
publishDate 2015
publisher Copernicus GmbH
record_format dspace
spelling mit-1721.1/981042024-05-15T02:21:28Z Top-down constraints on atmospheric mercury emissions and implications for global biogeochemical cycling Soerensen, A. L. Angot, H. Artz, R. Brooks, S. Brunke, E.-G. Conley, G. Dommergue, A. Ebinghaus, R. Holsen, T. M. Jaffe, D. A. Kang, S. Kelley, P. Luke, W. T. Magand, O. Marumoto, K. Pfaffhuber, K. A. Ren, X. Sheu, G.-R. Slemr, F. Warneke, T. Weigelt, A. Weiss-Penzias, P. Wip, D. C. Zhang, Q. Song, Shaojie Selin, Noelle E Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences Massachusetts Institute of Technology. Engineering Systems Division Song, Shaojie Selin, Noelle Eckley We perform global-scale inverse modeling to constrain present-day atmospheric mercury emissions and relevant physiochemical parameters in the GEOS-Chem chemical transport model. We use Bayesian inversion methods combining simulations with GEOS-Chem and ground-based Hg[superscript 0] observations from regional monitoring networks and individual sites in recent years. Using optimized emissions/parameters, GEOS-Chem better reproduces these ground-based observations and also matches regional over-water Hg[superscript 0] and wet deposition measurements. The optimized global mercury emission to the atmosphere is ~ 5.8 Gg yr[superscript −1]. The ocean accounts for 3.2 Gg yr[superscript −1] (55% of the total), and the terrestrial ecosystem is neither a net source nor a net sink of Hg[superscript 0]. The optimized Asian anthropogenic emission of Hg[superscript 0] (gas elemental mercury) is 650–1770 Mg yr[superscript −1], higher than its bottom-up estimates (550–800 Mg yr[superscript −1]). The ocean parameter inversions suggest that dark oxidation of aqueous elemental mercury is faster, and less mercury is removed from the mixed layer through particle sinking, when compared with current simulations. Parameter changes affect the simulated global ocean mercury budget, particularly mass exchange between the mixed layer and subsurface waters. Based on our inversion results, we re-evaluate the long-term global biogeochemical cycle of mercury, and show that legacy mercury becomes more likely to reside in the terrestrial ecosystem than in the ocean. We estimate that primary anthropogenic mercury contributes up to 23 % of present-day atmospheric deposition. National Science Foundation (U.S.). Atmospheric Chemistry Program (1053648) 2015-08-19T17:34:01Z 2015-08-19T17:34:01Z 2015-06 2015-05 Article http://purl.org/eprint/type/JournalArticle 1680-7324 1680-7316 http://hdl.handle.net/1721.1/98104 Song, S., N. E. Selin, A. L. Soerensen, H. Angot, R. Artz, S. Brooks, E.-G. Brunke, et al. “Top-down Constraints on Atmospheric Mercury Emissions and Implications for Global Biogeochemical Cycling.” Atmos. Chem. Phys. 15, no. 12 (2015): 7103–7125. https://orcid.org/0000-0002-6396-5622 https://orcid.org/0000-0001-6395-7422 en_US http://dx.doi.org/10.5194/acp-15-7103-2015 Atmospheric Chemistry and Physics Creative Commons Attribution http://creativecommons.org/licenses/by/3.0/ application/pdf Copernicus GmbH Copernicus Publications
spellingShingle Soerensen, A. L.
Angot, H.
Artz, R.
Brooks, S.
Brunke, E.-G.
Conley, G.
Dommergue, A.
Ebinghaus, R.
Holsen, T. M.
Jaffe, D. A.
Kang, S.
Kelley, P.
Luke, W. T.
Magand, O.
Marumoto, K.
Pfaffhuber, K. A.
Ren, X.
Sheu, G.-R.
Slemr, F.
Warneke, T.
Weigelt, A.
Weiss-Penzias, P.
Wip, D. C.
Zhang, Q.
Song, Shaojie
Selin, Noelle E
Top-down constraints on atmospheric mercury emissions and implications for global biogeochemical cycling
title Top-down constraints on atmospheric mercury emissions and implications for global biogeochemical cycling
title_full Top-down constraints on atmospheric mercury emissions and implications for global biogeochemical cycling
title_fullStr Top-down constraints on atmospheric mercury emissions and implications for global biogeochemical cycling
title_full_unstemmed Top-down constraints on atmospheric mercury emissions and implications for global biogeochemical cycling
title_short Top-down constraints on atmospheric mercury emissions and implications for global biogeochemical cycling
title_sort top down constraints on atmospheric mercury emissions and implications for global biogeochemical cycling
url http://hdl.handle.net/1721.1/98104
https://orcid.org/0000-0002-6396-5622
https://orcid.org/0000-0001-6395-7422
work_keys_str_mv AT soerensenal topdownconstraintsonatmosphericmercuryemissionsandimplicationsforglobalbiogeochemicalcycling
AT angoth topdownconstraintsonatmosphericmercuryemissionsandimplicationsforglobalbiogeochemicalcycling
AT artzr topdownconstraintsonatmosphericmercuryemissionsandimplicationsforglobalbiogeochemicalcycling
AT brookss topdownconstraintsonatmosphericmercuryemissionsandimplicationsforglobalbiogeochemicalcycling
AT brunkeeg topdownconstraintsonatmosphericmercuryemissionsandimplicationsforglobalbiogeochemicalcycling
AT conleyg topdownconstraintsonatmosphericmercuryemissionsandimplicationsforglobalbiogeochemicalcycling
AT dommerguea topdownconstraintsonatmosphericmercuryemissionsandimplicationsforglobalbiogeochemicalcycling
AT ebinghausr topdownconstraintsonatmosphericmercuryemissionsandimplicationsforglobalbiogeochemicalcycling
AT holsentm topdownconstraintsonatmosphericmercuryemissionsandimplicationsforglobalbiogeochemicalcycling
AT jaffeda topdownconstraintsonatmosphericmercuryemissionsandimplicationsforglobalbiogeochemicalcycling
AT kangs topdownconstraintsonatmosphericmercuryemissionsandimplicationsforglobalbiogeochemicalcycling
AT kelleyp topdownconstraintsonatmosphericmercuryemissionsandimplicationsforglobalbiogeochemicalcycling
AT lukewt topdownconstraintsonatmosphericmercuryemissionsandimplicationsforglobalbiogeochemicalcycling
AT magando topdownconstraintsonatmosphericmercuryemissionsandimplicationsforglobalbiogeochemicalcycling
AT marumotok topdownconstraintsonatmosphericmercuryemissionsandimplicationsforglobalbiogeochemicalcycling
AT pfaffhuberka topdownconstraintsonatmosphericmercuryemissionsandimplicationsforglobalbiogeochemicalcycling
AT renx topdownconstraintsonatmosphericmercuryemissionsandimplicationsforglobalbiogeochemicalcycling
AT sheugr topdownconstraintsonatmosphericmercuryemissionsandimplicationsforglobalbiogeochemicalcycling
AT slemrf topdownconstraintsonatmosphericmercuryemissionsandimplicationsforglobalbiogeochemicalcycling
AT warneket topdownconstraintsonatmosphericmercuryemissionsandimplicationsforglobalbiogeochemicalcycling
AT weigelta topdownconstraintsonatmosphericmercuryemissionsandimplicationsforglobalbiogeochemicalcycling
AT weisspenziasp topdownconstraintsonatmosphericmercuryemissionsandimplicationsforglobalbiogeochemicalcycling
AT wipdc topdownconstraintsonatmosphericmercuryemissionsandimplicationsforglobalbiogeochemicalcycling
AT zhangq topdownconstraintsonatmosphericmercuryemissionsandimplicationsforglobalbiogeochemicalcycling
AT songshaojie topdownconstraintsonatmosphericmercuryemissionsandimplicationsforglobalbiogeochemicalcycling
AT selinnoellee topdownconstraintsonatmosphericmercuryemissionsandimplicationsforglobalbiogeochemicalcycling