Mapping Dirac quasiparticles near a single Coulomb impurity on graphene

The response of Dirac fermions to a Coulomb potential is predicted to differ significantly from how non-relativistic electrons behave in traditional atomic and impurity systems. Surprisingly, many key theoretical predictions for this ultra-relativistic regime have not been tested. Graphene, a two-di...

Full description

Bibliographic Details
Main Authors: Wang, Yang, Brar, Victor W., Shytov, Andrey V., Wu, Qiong, Regan, William, Tsai, Hsin-Zon, Zettl, Alex, Crommie, Michael F., Levitov, Leonid
Other Authors: Massachusetts Institute of Technology. Department of Physics
Format: Article
Language:en_US
Published: Nature Publishing Group 2015
Online Access:http://hdl.handle.net/1721.1/98222
https://orcid.org/0000-0002-4268-731X
Description
Summary:The response of Dirac fermions to a Coulomb potential is predicted to differ significantly from how non-relativistic electrons behave in traditional atomic and impurity systems. Surprisingly, many key theoretical predictions for this ultra-relativistic regime have not been tested. Graphene, a two-dimensional material in which electrons behave like massless Dirac fermions, provides a unique opportunity to test such predictions. Graphene’s response to a Coulomb potential also offers insight into important material characteristics, including graphene’s intrinsic dielectric constant, which is the primary factor determining the strength of electron–electron interactions in graphene. Here we present a direct measurement of the nanoscale response of Dirac fermions to a single Coulomb potential placed on a gated graphene device. Scanning tunnelling microscopy was used to fabricate tunable charge impurities on graphene, and to image electronic screening around them for a Q = +1|e| charge state. Electron-like and hole-like Dirac fermions were observed to respond differently to a Coulomb potential. Comparing the observed electron–hole asymmetry to theoretical simulations has allowed us to test predictions for how Dirac fermions behave near a Coulomb potential, as well as extract graphene’s intrinsic dielectric constant: ε[subscript g] = 3.0±1.0. This small value of ε[subscript g] indicates that electron–electron interactions can contribute significantly to graphene properties.